Reduce Before You Localize: Delta-Debugging and Spectrum-Based Fault Localization

Arpit Christi,* Matthew Lyle Olson,* Mohammad Amin Alipour,† Alex Groce‡

*EECS, Oregon State University, {christia,olsomatt}@oregonstate.edu
†Department of Computer Science, University of Houston, alipour@cs.uh.edu
‡SICCS, Northern Arizona University, agroce@gmail.com

Abstract

Spectrum-based fault localization (SBFL) is one of the most popular and studied methods for automated debugging. Many formulas have been proposed to improve the accuracy of SBFL scores. Many of these improvements are either marginal or context-dependent. This paper proposes that, independent of the scoring method used, the effectiveness of spectrum-based localization can usually be dramatically improved by, when possible, delta-debugging failing test cases and basing localization only on the reduced test cases. We show that for programs and faults taken from the standard localization literature, a large case study of Mozilla’s JavaScript engine using 10 real faults, and mutants of various open-source projects, localizing only after reduction often produces much better rankings for faults than localization without reduction, independent of the localization formula used, and the improvement is often even greater than that provided by changing from the worst to the best localization formula for a subject.

I. Introduction

Debugging is one of the most time-consuming and difficult aspects of software development [1], [2]. Recent years have seen a wide variety of research efforts devoted to easing the burden of debugging by automatically localizing faults. The most popular approaches, following the seminal work of Jones, Harrold, and Stasko [3], [4] use statistics of spectra [5] of failing and successful executions to score program entities according to how likely they are to be faulty. These spectrum-based approaches are popular in part because they have outperformed competing approaches, and in part because they are highly efficient and easy to use — they typically only require the collection of coverage data and marking of tests as passing and failing, and thus are both computationally cheap and easy to fully automate. Many formulas have been proposed as potentially improving the accuracy of scores [6], [7], [8], [9], [10] over Tarantula.

Despite this large body of work and continuing interest, there is recent concern about the long-term value of localization research. Parnin and Orso asked the core question: “Are automated debugging techniques actually helping programmers?” [11], and did not receive comforting answers. Parnin and Orso studied how actual programmers made use of localization techniques [11] and concluded that 1) absolute rank should be used to measure effectiveness, because developers lose interest in localizations after a very few incorrect suggestions, and 2) there should be a focus on using richer information (e.g. actual test cases) rather than just a raw localization in debugging aids. Combined with Yoo et al.’s establishment [12] that there is no truly optimal formula for localization, this suggests that the most valuable contributions to localization would be formula-independent methods that potentially result in extremely large improvements in fault rank rather than small, incremental average improvements in rank. This paper, therefore, argues that in many cases there is a simple, easily applied, improvement to localization that works with any formula (or other modification to the method we are aware of), has benefits to developers even if they ignore the localization, and often produces very large improvements in what we consider the most important quantitative measure of localization effectiveness, the absolute worst possible ranking of the faulty code.

A. Reduce Before You Localize

Failing test cases usually execute much more non-faulty code than faulty code, and in a sense it is essentially
this fact that makes fault localization difficult. Due to
the way spectrum-based localizations work, reducing
the amount of non-faulty code executed in failing test cases
should almost always improve localization. Consider the
Tarantula [3], [4] formula. Tarantula, like most spectrum-
based approaches, determines how suspicious (likely to be
faulty) a coverage entity \(e \) (typically a statement) is based
on a few values computed over a test suite:

- \(\text{passed}(e) \): # of tests covering \(e \) that pass
- \(\text{failed}(e) \): # of tests covering \(e \) that pass
- \(\text{totalpassed} \): the # of passing tests
- \(\text{totalfailed} \): the # of failing tests

\[
\text{suspiciousness}(e) = \frac{\text{failed}(e)}{\text{totalfailed} + \text{totalpassed}}
\]

It is easy to see that if we lower \(\text{failed}(e) \) for all
non-faulty statements, while keeping everything else un-
changed, the rank (in suspiciousness) of faulty statements
will improve. Reducing coverage of non-faulty statements
in failing tests, then, is a potentially very effective and
formula-independent approach to improving localizations.

Unfortunately, there is no method we know of in the
literature for reducing the amount of non-faulty code
executed in a test. However, there is a widely used method
for reducing the size of failing test cases: delta-debugging.

Delta-debugging [13] (DD for short) is an algorithm
for reducing the size of failing test cases. Delta-debugging
algorithms have retained a common core since early pro-
posals [14]: (1) \(t_{1\min} \) recommending two properties: (1) \(t_{1\min} \)
fails and (2) removing any component from \(t_{1\min} \) results
in a test case that does not fail. Such a test case is
called \textit{1-minimal}. Delta-debugging reduces the size of a
test case in terms of its components. Its purpose is to
produce small test cases that are easier for humans to read
and understand, and thus debug. In our long experience
with delta-debugging [15], [16] and in recent work on
variations and applications of delta-debugging [17], [18],
[19], [20], [21], we noticed that in addition to reducing the
“static” human-readable text of a test case, delta-debugging
also almost always \textit{reduces the code covered by a failing test case},
often by hundreds or thousands of lines [17].

The core proposal of this paper, therefore, is that \textit{failing test cases should be, when possible, reduced with delta-
debugging before they are used in spectrum-based fault localization: reduce before you localize}. The original,
unreduced, test cases should not be used, as they likely
contain much irrelevant, non-faulty code that may mislead localization.

Even if reduction does not improve the localization, we
show that under some reasonable assumptions it will not
produce a \textit{worse} localization, and at least the developer
now has a set of smaller, easier-to-understand test cases to read. In fact, we believe \textit{the only reason not to reduce test cases before localization, as a best practice, is when it is too onerous (or not possible) to set up delta-debugging for test cases}.

In this paper, we show that using delta-debugging to
reduce failing test cases, when applicable, usually produces
improvements in fault ranking, using a variety of standard
localization formula from the literature, and these improve-
ments are often dramatic. In order to place our results on
a firm empirical footing [22] we provide results over both
SIR/Siemens [23] suite subjects studied in previous litera-
ture, a set of real faults from an industrial-strength random
testing framework for the SpiderMonkey JavaScript engine
[17], [24], and a variety of open source Java programs. Not
only does reducing failing tests produce improvements; the
improvements produced are often even better than those
provided by optimally switching formula.

II. Related Work

As discussed in the introduction, there is a very large
body of work on spectrum-based fault localization (e.g. [4],
[6], [7], [8], [9], [25], [26], [10], [27], [28], [29]), all of
which informs our work. The most important motivational
results for this paper are the investigation of Parnin and
Orso [11] into the actual use of localizations for program-
ners, which inspired our evaluation methods, and the claim
of Yoo et al. [12] that no single formula is best, which
directed us to seek formula-independent improvements to
localization. Our use of many programs and methods was
inspired by the threats identified by Steimann et al. to
empirical assessments of fault localizations [22].

The most similar actual proposed improvement to local-
ization to ours is the entropy-based approach of Campos
The underlying approaches are quite different, but both
aim to improve the spectra used in localization rather than
change their interpretation. The primary advantage of their
approach over ours is that it can be of use when test cases
cannot be reduced; on the other hand, EvoSuite is probably
considerably harder to apply for most developers than
off-the-shelf delta-debugging. Another similar approach
(sharing the same novel aspect of changing the test cases
examined rather than the scoring function) is that of Xuan
and Monperrus, who propose a \textit{purification} for test cases
[31] that executes omitted assertions and uses dynamic
slicing [32] to remove some code from failing test cases
(parametrized by each assertion). Delta-debugging can
remove code from unit tests that would be in any dynamic
slice, since it does not have to respect any property but that
the test case still fails. A core practical difference is that
their approach only applies to unit tests of method calls (since the slicing is at the test level, not of the program tested), and that we believe delta-debugging tools are more widely used and easily applicable than slicing tools (e.g. they are language-independent).

This paper also follows previous work on delta-debugging [13], [14], [33] and its value in debugging tasks. The most relevant recent work is the set of papers proposing that in addition to producing small test cases for humans to read, delta-debugging is a valuable tool in fully automated software engineering algorithms even if humans do not read the reduced tests: e.g., it is helpful for producing very fast regression suites [17], for improving coverage with symbolic execution [18], and for clustering/ranking test cases by the underlying fault involved [19].

III. Assumptions and Guarantees

In addition to being orthogonal to the spectrum-based localization formula used, test case reduction has a second major advantage independent of empirical results. Namely, under a set of assumptions that hold in many cases, reduction can only improve, or leave unchanged, the effectiveness of localization. All formulas for localization have some instances in which they diminish the effectiveness of localization compared to an alternative formula [12]. Reducing failing tests before applying a formula, however, at worst leaves the effectiveness of localization unchanged, for most of the formulas in widespread use that we are aware of, under three assumptions:

1) all failing test cases used in the localization involve the same fault,
2) each failing test case reduces to a test case that fails due to the same fault as the original test case, and
3) reducing the input size (in components) also covers less code when the test executes.

The first assumption is probably the least likely to hold in some settings; however, it is also the assumption that is least relied upon. The second assumption is a usual assumption of delta-debugging. Most delta-debugging setups are engineered with this goal in mind, often using some aspect of failure output or test case structure to keep “the same bug.” Observed “slippage” rates for faults seem to be fairly low [19], even with little mitigation, and mitigation strategies have been proposed to reduce even this rate [34]. Note that in the setting where a program has a single fault, assumptions 1 and 2 always hold. As to the third assumption, it is uncommon but possible for reduced test cases to increase coverage; cause reduction can usually be used to mitigate the rare exceptions [35].

Given these assumptions, we now show that reduction is, at worst, harmless for most formulas. Recall that spectrum-based localizations rely on only a few values relevant to each entity e to be ranked in a localization: passed(e), failed(e), totalpassed, and totalfailed. Given assumptions 1-3 above, for faulty statements all of these formula elements will be unchanged after delta-debugging. For non-faulty statements, the only possible change is that failed(e) may be lower than before failing test cases were reduced. Holding the other values constant, it is trivial to show that most formulas under consideration are (as we would expect), monotonically increasing in failed(e). Therefore, after reduction, the suspiciousness scores for faulty statements are unchanged and the suspiciousness scores for non-faulty statements are either unchanged or lower. The rank of all faulty statements is therefore either unchanged or improved. There are more spectrum-based fault localization formulas in use. In our evaluation, we have used 3 well known examples, in addition to the basic Tarantula [3] formula, as representative:

Ochiai [6]:

\[
suspiciousness(e) = \frac{\text{failed}(e)}{\sqrt{\text{totalfailed}(e) \times \text{totalpassed}(e)}}
\]

Jaccard [8]:

\[
suspiciousness(e) = \frac{\text{failed}(e)}{\text{totalfailed}(e) + \text{totalpassed}(e)}
\]

SBI: [26], [9]

\[
suspiciousness(e) = \frac{\text{failed}(e)}{\text{total}(e) + \text{passed}(e)}
\]

All these formulas are monotonically increasing in failed(e). Reduction can only theoretically improve fault localization or in worst case leave it unchanged if the formula under consideration is monotonically increasing failed(e). We chose these 4 formulas as they were used before to study the effects of test suite reduction [26] and test case purification [31] on fault localization.

IV. Experimental Results

Because we aim to take into account the findings of Parnin and Orso [11], our evaluation of fault localizations is based on a pessimistic absolute rank of the highest ranked faulty statement. That is, for each set of suspiciousness metrics computed, our measure of effectiveness is the worst possible position at which the first faulty statement can be reached, when examining the code in suspiciousness-ranked order. \(^1\) For example, if ten statements all receive a suspiciousness score of 1.0 (the highest possible suspiciousness), and one of these is the fault, we assign this localization a rank of 10; an unlucky programmer might examine this statement last of the ten highest-ranked statements. Pessimistic rank nicely distinguishes this result from another localization that also places the bug

\(^1\)We consider reaching any faulty statement to be sufficient, as in [36].
at score 1.0, but gives twenty statements a 1.0 score. In our view, following Parnin and Orso [11], the most important goal of a localization is to direct the developer to a faulty statement as rapidly as possible, ignoring the size of the entire program or even of the faulty execution.

A. SIR Programs

Our initial experiments use the Siemens/SIR [37], [23] suite programs studied in many previous papers on fault localization, in particular the classic evaluation of the Tarantula technique [4]. These subjects provide a large number of faults, reasonable-sized test suites, and have historically been used to evaluate localization methods.

Of the seven Siemens programs considered in the empirical evaluation of Tarantula, only one was unsuitable for delta debugging: TCAS takes as input a fixed-size vector of integers, and therefore its inputs cannot be easily decomposed. For the remainder of the programs, the input is easily considered as either 1) a sequence of characters or 2) a sequence of lines, when character-level delta debugging is not efficient (and so unlikely to be chosen by users in practice), which was required for the tot_info subject. In all cases, reduction took on average less than three seconds per failing test case, an essentially negligible computational cost.

We evaluated our proposal by 1) first computing the fault ranking for each version of each subject by the five formulas then 2) performing the same computation, but using only reduced (by delta-debugging) versions of the failing tests. Reduction was performed using Zeller’s delta-debugging scripts, available on the web, and comparing the output of the original (correct) version of the program and the faulty version as a pass/fail oracle.

Figures 1 and 2 show the results The lighter shaded bars show the ranking of the fault, without any reduction. The darker bars show the ranking after delta-debugging all failures. The graphs are shown in log-scale due to the range of rankings involved. In many cases, reducing test cases before localizing improved the ranking of the fault by a factor of two or more. Results for individual subject vary: for print_tokens, the average ranking for faults, over all bugs and all formulas, is 59.5 without reduction, and 36.4 with reduction. The result is improved by reduction in 19 cases, remains the same in 15 cases, and is worse in 1 case. Table I shows similar data for all the SIR subjects.

Improvement in fault rank after reduction was 1.3 times as common as no change in rank, and nearly 10 times as common as worse rank for the fault. In addition to the frequency of improvement of fault rank, it is also important to examine the degree of improvement (or the opposite) provided by reduction. Table II shows, the min, max, and average for changes in rank. The effect size when reduction improved rank was usually much larger than the effect size when it gave worse results. For replace, the subject with the most instances where reduction made fault ranking worse, we see that the effect size when reduction was harmful was much smaller than when reduction was helpful. Furthermore, when reduction helped, it often improved the ranking of the fault by more than optimally switching formula That is, we can ask: if we compare taking the worst formula and applying reduction to improve the localization, how often is this better than switching to the best localization formula for that subject and fault? Obviously applying reduction is more practical, since we don’t know in advance which formula will perform best, until we know the correct result. By this comparison, it was better to apply reduction than switch from worst to best formula in 36 cases over all SIR subjects; it was better to switch formula in only 22 cases.

B. SpiderMonkey JavaScript Engine

SpiderMonkey is the JavaScript Engine for Mozilla, an extremely widely used, security-critical interpreter/JIT compiler. SpiderMonkey has been the target of aggressive random testing for many years now. A single fuzzing tool, jsfunfuzz [24], is responsible for identifying more than 1,700 previously unknown bugs in SpiderMonkey [38]. SpiderMonkey is (and was) very actively developed, with over 6,000 code commits in the period from 1/06 to 9/11 (nearly 4 commits/day). SpiderMonkey is thus ideal for evaluating how reduction aids localization when using a sophisticated random testing system, using the last public release of the original jsfunfuzz tool [24], modified for swarm testing [39]. Using a set of faults in SpiderMonkey...
1.6 found with random testing [19], we find that reduction is essential for localization of these complex compiler bugs, and that the use of reduction is even somewhat more important than the choice of localization formula.

Figure 3 shows the change in rankings of the faulty code for 10 SpiderMonkey bugs (Table III). These bugs were taken from a data set used in previous fault identification papers [19], [40]. Out of the 28 bugs studied in that paper we chose 10 random bugs for which, by hand, we could confirm the true set of faulty lines in the code commit. Each bug is identified by the revision number of the commit in which it was fixed; e.g., R0 maps to revision 1.10.4.1, the first commit of Spidermonkey changes under consideration. Table III shows all bugs studied, the commit version fixing the bug, the number of failing test cases for that bug (# Failures), and the size (in lines) of the fixing commit's *diff*. The faults under consideration here are clearly non-trivial (in fact, most fixes involved changes to multiple source files). For localization we used the original and reduced test cases [19] plus 720 additional randomly generated *passing* tests generated using the same tool.

Across these 10 bugs, the average ranking for the first faulty line encountered was 1,550.7 without reduction, improving to 994.5 with reduction. Reduction improved the localization in 33 cases, with a minimum improvement of 1 ranking and a maximum improvement of 2,137 positions. The average improvement was 674 positions. The results were unchanged in 7 cases. It is important to note that even with such a challenging setting and real bugs, fault localization with reduction performs better than fault localization without reduction irrespective of formula being used: in the worst case it performed equally well. It was better to use reduction than to optimally (from worst to best) switch formula for 5 of the 10 bugs; it was better to switch formula in 4 cases, and in one case both methods gave the same result. While the results show that reduction

<table>
<thead>
<tr>
<th>Bug#</th>
<th>Revision Fixed</th>
<th>#Failures</th>
<th>diff size</th>
</tr>
</thead>
<tbody>
<tr>
<td>R60</td>
<td>1.16.2.1</td>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>R95</td>
<td>1.3.2.3.8</td>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>R115</td>
<td>1.4.8.1</td>
<td>4</td>
<td>392</td>
</tr>
<tr>
<td>R360</td>
<td>3.117.2.6</td>
<td>3</td>
<td>223</td>
</tr>
<tr>
<td>R880</td>
<td>3.172.14</td>
<td>28</td>
<td>272</td>
</tr>
<tr>
<td>R1172</td>
<td>3.208.2.63</td>
<td>150</td>
<td>214</td>
</tr>
<tr>
<td>R1294</td>
<td>3.241.2.1</td>
<td>405</td>
<td>80</td>
</tr>
<tr>
<td>R1543</td>
<td>3.36.16.1</td>
<td>146</td>
<td>169</td>
</tr>
<tr>
<td>R1561</td>
<td>3.37.2.1.4.1.2.2</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>R1873</td>
<td>3.50.2.29</td>
<td>1,041</td>
<td>56</td>
</tr>
</tbody>
</table>

TABLE III. Spidermonkey Bugs
was extremely effective in improving localization, it is also true that the localization was still not very helpful in many of these cases, considering absolute pessimistic rank as success criteria. Of course, SpiderMonkey 1.6 has over 80KLOC, and even reduced failing tests typically executed over 8,000 lines of code, so a “poor” localization may be useful in such a large fault search space. For 6 of the 10 bugs, all scores after reduction gave a fault ranking < 128; without localization, there were only 4 such bugs.

C. Open Source Projects

Next we applied reduction based localization to five open source Java programs (shown in Table IV), generating mutants for each of the projects to simulate bugs, following previous fault localization papers [41], [31].

Our strategy was to create mutants using the approach of Xuan and Monperrus [31], using 6 mutant operators. From each set of mutants generated, we selected 5 or 6 mutants at random that met the following criteria: (1) the
mutant was killed by at least one test case and (2) the mutant generated no errors in JUnit test cases. A JUnit failure is caused by an unsatisfied assertion, but an error is caused by another kind of test failure, which may include some test setup or oracle problems. Using assertion failures only assured that we retained the intent of the original tests.

Taking all the open source projects and mutants together, we note that reduction improved fault ranking in 51 cases, left it unchanged in 55 cases, and made it worse in only 2 cases. The average improvement was 17.62 ranking positions; the average negative effect size was 2 ranking positions. The best improvement was 100 rank positions. The average fault ranking without reduction was 37.64, and with reduction this improved to 29.36.

D. Threats to Validity

The primary threats to validity here are to external validity [22], despite our use of a reasonable number of faults and subjects. Our subjects are all C or Java programs, for example, and only the SpiderMonkey faults are definitely real faults that required substantial developer time to debug. To avoid construct threats, we developed independent experimental code-bases for some of the subjects, executed both, and compared results to cross-check the shared code base used for all subjects. Fortunately, most tasks here are straightforward (test execution, coverage collection, delta-debugging, and calculation of scores).

A second point (not strictly a threat) is that this paper focuses on single-fault localization. Even when there are multiple faults, it may be better to use techniques for clustering test cases by likely fault [42], [19], [43], [40] and then perform single-fault localization than to try to localize multiple faults at once.

V. Conclusions

Our primary conclusion is that, when possible, anyone attempting to use spectrum-based fault localization should use delta-debugging to reduce before localizing. Across Siemens subjects, real Mozilla SpiderMonkey bugs, and mutants of a set of open source projects, reducing test cases before localizing was seldom harmful and in the cases where it caused harm the effect size was much smaller than in the cases where reduction was helpful. In most cases, reduction was helpful, and it was sometimes extremely effective, improving fault ranking by a factor of 2 (or more) and a very large absolute rank, sometimes hundreds of lines. This makes sense: if failing test cases only contained faulty code, fault localization would be trivial. Delta-debugging, by (usually) reducing the coverage of non-faulty code, approaches this ideal situation as best we know how at present. While delta-debugging is not a panacea for localization, in that it does not apply to some kinds of inputs and is sometimes not helpful, it often produces a very large improvement in localization effectiveness, quite often more so than can be gained by switching from worst to best formula. We speculate that reduction should also assist mutation-based fault localization methods [44], [45], [46], [40], since the mutants that drive localization will be those that cause failing tests to succeed, and reduction should limit these as well.

Our larger take-away message is that the lessons of Parnin and Orso [11] should be taken to heart: rather than seek incremental improvements in localization effectiveness, we need large improvements in fault rank, and need to exploit all sources of information, not just coverage. Even when reduction does not assist localization, we believe that the reduced test cases are highly valuable debugging aids. Furthermore, because no single formula is “best” for all faults [12], there is much to be gained by devising aids to fault localization that apply to any formula and any type of spectrum. If automated fault localization is to be adopted in real-world settings, we need more than a competing set of ranking algorithms: we need a complete ecosystem for localization and debugging. As future work, we would like to use delta-debugging as a part of a realistic examination of fault localization in settings where debugging is genuinely challenging and thus it could truly improve developer productivity, e.g. compilers [40].

References
