Homework 8

Problems 19 of 2.1: If $\$ 1000$ is deposited in an account that pays interest quarterly, and if the money grows to $\$ 1150$ after 2 years, find the interest rate.

Problem 22 of 2.1 (similar to Example 6 on page 21): One bank offers to loan you money at an interest rate of 12% compounded quarterly, and another bank offers to loan you money at 11.8% compounded continuously. Which loan would you prefer, and why?

Problem 19 of 2.2: A fixed monthly payment of $\$ 400$ is made for 36 months at the rate of 12% per year. Calculate both the present value and the future value of the annuity.

Problem 37 of 2.2: You have saved $\$ 25,000$ for a down payment on a house, and can afford $\$ 1100$ per month in payments. If the current interest rates on 30-year mortgages are 9% annually, what is the most expensive house you can afford?

Problem 39 of 2.2: You have taken out a 30 -year mortgage of $\$ 100,000$ at 6% annual interest. Your plan is to sell the house in 4 years, paying off the mortgage at that time. How much will you owe?

Problem 43 of 2.2: Which will be worth more at the end of 5 years?
a. $\$ 100$ per month at 0.6% per month
b. $\$ 20,000$ earning 0.5% per month

Do also the following problem:

Consider a 30 -year home mortgage of $\$ 100,000$ at 6% per year, compounded monthly. What is the monthly payment? Use Theorem 1 on page 42 to make an amortization schedule of the first 6 months:

Month (k)	Principal P(k)	Interest I(k)	Balance due B(k)
1			
2			
3			
4			
5			
6			

where
$P(k)$ is the amount paid to the principal in the k^{\prime} th payment,
$\mathrm{I}(\mathrm{k})$ is the amount paid to interest in the k^{\prime} th payment,
$B(k)$ is the balance due after the k^{\prime} th payment.

