Homework 4

Problem 1 is similar to the example on page 79. Problem 2 is similar to Problems 1-10 on page 84. Problem 5 is similar to Problems 42-57 on page 108.

1. Let $f(x)=x^{2}+x$. Simplify the expression

$$
\frac{f(a+h)-f(a)}{h}
$$

2. Let $f(x)=x+1$ and $g(x)=\frac{1}{\sqrt{x+2}}$. Find the following values if they exist.
(a) $(f+g)(1)$
(b) $\left(\frac{f}{g}\right)(-3)$
(c) $\left(\frac{g}{f}\right)(-1)$
(d) $(f g)(2)$
3. State the domain of the following functions. Identify the intercepts with the x-axis and y-axis. Determine if the function is odd, or even, or neither of those.
(a) $f(x)=x-1$
(b) $f(x)=\frac{1}{x^{2}-1}$
4. Let $f(x)$ be a function defined piecewise as follows:

$$
f(x)=\left\{\begin{array}{ccc}
x^{2} & \text { if } & x \leq-1 \\
2+x & \text { if } & -1<x \leq 1 \\
3 & \text { if } & x>1
\end{array}\right.
$$

(a) Graph the function.
(b) Find $f(-1), f(0), f(1), f(2)$ if they exist.
(c) Find x such that $f(x)=0$.
5. Use the graph of $y=f(x)$ given below to answer the question.

(a) Find the domain of f.
(b) Find the range of f.
(c) Find the intervals of x such that $f(x) \geq 0$.
(d) List the intervals where f is decreasing.
(e) List the local minima and maxima if any exist.

