MATH 111A, MIDTERM, FALL 2022

INSTRUCTOR: TUAN PHAM

Name

Instructions:

- This is a closed-book exam, 90 minutes long.
- A non-graphing calculator is allowed. Scratch paper is allowed.
- For Problems 1-11, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 12 and 13, make sure to show all necessary steps. Mysterious answers will receive little or no credit.
- Do not discuss the exam with anyone during Nov 3-8.

1.	(A) (B) (C) (D)
2.	(A) (B) (C) (D)
3.	(A) (B) (C) (D)
4.	(A) (B) (C) (D)
5.	(A) (B) (C) (D)
6.	(A) (B) (C) (1)
7.	(A) (B) (C) (D)
8.	(A) (B) (C) (D)
9.	(A) (B) (C) (D)
10.	(A) (B) (C) (D)
11.	(A) (B) (C) (D)

Problem	Possible points	Earned points
$1-11$	22	
12	5	
13	5	
Total	32	

Problem 1. (2 points) Which of the following interval notations describe the set

$$
\{x \mid x<5 \text { or } x \geq 2\}
$$

A. $[2,5)$
B. $(-\infty, 5) \cup[2, \infty)$
C. $(-\infty, \infty)$
D. Both B and C

Problem 2. (2 points) The points $A(1,-2)$ and $B(-2,-3)$ lie in the quadrants
A. I and II
B. II and III
C. IV and III
D. I and III

Problem 3. (2 points) Consider three points $A(1,1), B(-1,2), C(-1,0)$. Which side of the triangle $A B C$ is the shortest side?
A. $A B$
B. $B C$
C. $C A$
D. All sides have the same length.

Problem 4. (2 points) The graph of the relation $\{(x, 1) \mid x \in \mathbb{R}\}$ is
A. a line parallel to the y-axis and intersecting the x-axis at $x=1$.
B. a line parallel to the x-axis and intersecting the y-axis at $y=1$.
C. the x-axis.
D. the y-axis.

Problem 5. (2 points) Determine from the above pictures the correct graph of the relation

$$
R=\{(1,1),(1,3),(2,3),(2,0)\} .
$$

A. Graph (A)
B. Graph (B)
C. Graph (C)
D. Graph (D)

Problem 6. (2 points) The function $f(x)=-x^{2}+x$ is
A. an odd function.
B. an even function.
C. both even and odd.
D. neither even nor odd.

Problem 7. (2 points) Determine the domain of the function

$$
f(x)=\frac{\sqrt{x-1}}{x-2} .
$$

A. $(-\infty, 1)$
B. $[1, \infty)$
C. $[1,2) \cup(2, \infty)$
D. $(1,2) \cup(2, \infty)$

Problem 8. (2 points) The graph of function $g(x)=\frac{1}{x+1}$ can be obtained from the graph of function $f(x)=\frac{1}{x}$ by
A. shifting the graph of $f(x)$ to the left 1 unit.
B. shifting the graph of $f(x)$ to the right 1 unit.
C. shifting the graph of $f(x)$ up 1 unit.
D. shifting the graph of $f(x)$ down 1 unit.

Problem 9. (2 points) A function f takes a real number x and performs the following three steps in the order given: (1) square; (2) subtract 1 ; (3) make the quantity the denominator of a fraction with numerator 2. Determine the correct expression of $f(x)$.
A. $\frac{\sqrt{x}-1}{2}$
B. $\frac{2}{\sqrt{x}-1}$
C. $\frac{2}{x^{2}-1}$
D. $\frac{x^{2}-1}{2}$

Problem 10. (2 points) The graph of a function f is given in the picture below. On what interval is

f increasing?
A. $[-1,0]$
B. $[-1,1]$
C. $[0,2]$
D. $[1,3]$

Problem 11. (2 points) Let $f(x)=\frac{x^{2}-x}{x+1}$. Find x such that $f(x)=0$.
A. 0
B. 1
C. -1
D. Both A and B

Problem 12. (5 points) Let $f(x)=-x^{2}$. Simplify

$$
\frac{f(x+h)-f(x)}{h}
$$

Make sure to show all your computation steps.

$$
\begin{aligned}
& f(x+h)=-(x+h)^{2}=-x^{2}-2 x h-h^{2} \\
& f(x)=-x^{2} \\
& \frac{f(x+h)-f(x)=-2 x h-h^{2}=h(-2 x-h)}{h}=-2 x-h
\end{aligned}
$$

Problem 13. (5 points) Let f be a function defined piecewise as follows.

$$
f(x)=\left\{\begin{array}{cll}
1-x^{2} & \text { if } & x<0 \\
1 & \text { if } & 0 \leq x \leq 1 \\
2-x & \text { if } & x>1
\end{array}\right.
$$

(a) Make a table of at least 5 values of x in the interval $[-2,3]$ and corresponding values of $y=f(x)$. Then sketch the function.
(b) Find the x-intercepts and y-intercepts of the graph. (You need to write an equation and solve it. Don't just rely on the graph.)

x	$f(x)$
-2	-3
-1	0
0	1
1	1
2	0
3	-1

To find the y-intercept, we only need to compute $f(0)$.

$$
f(0)=1 \quad(\text { based on the definition of } f)
$$

To find the x-intercepts, we set $f(x)=0$ and solve for x.
Such x must be either less than 0 or greater than 1 because f is equal to 1 when x is between 0 and 1.

- If $x<0: \quad f(x)=1-x^{2}=0$ gives $x^{2}=1$, i.e. $x= \pm 1$.

Only - I is chosen because it is Cess than 0 .

- If $x>1: \quad f(x)=2-x=0$ gives $x=2$.

Therefore, there are two x-intercepts: $x=-1$ and $x=2$.

