Maple Lab 1

Maple is a mathematical software first developed by the University of Waterloo in the 1980s, later developed commercially by the company Maplesoft.

1 Practice

Type the following, then press Enter.

- (1) 35/6
- (2) evalf(35/6)
- (3) sqrt(2), |-7|
- (4) evalf(%)
- (5) 34^100
- (6) x:=2
- (7) y:=x^2
- (8) $y:=x^3:$ (with the colon)
- (9) y
- (10) $\frac{2^3}{3^4}$ (highlight 2³, then press the forward slash to jump to the denominator)
- (11) $\frac{x+y+z}{3}$
- (12) e^2 (then Shift+Enter) evalf(%)
- (13) exp(2); (then Shift+Enter) evalf(%)
- (14) a:=ln(2); (then Shift+Enter) evalf(a)
- (15) sin(pi),pi²,sin(Pi),Pi²
- (16) f:=x->x^2
- (17) f(2)
- (18) plot(f(x), x=-2..2)Right click on the plot, then choose Title. Enter the title $f(x) = x^2$. To enter in math mode, click the Math button on the menu bar.
- (19) plot(f(x),x=-2..2,gridlines)
- (20) ?plot
- (21) $g:=x-\sin(x)*\cos(x)$; (then Shift+Enter) plot(g(x),x=-2..2)
- (22) f(g(x)); (then Shift+Enter) g(f(x))
- (23) plot([f(x),g(x)],x=-2..2)
- (24) plot([x,x^2,x^3],x=0..1.2)

- (25) f := x->piecewise(0 < x < 1, x, 1 < x < 2, 2, x > 2, 3 x)
- (26) plot(f(x),x=0..3)
- (27) limit(f(x),x=1), limit(f(x),x=1,left)

Tip: to insert a computation cell before a current cell, press Ctrl + Shift + K. To insert one after, press Ctrl + Shift + J.

2 Exercises

- 1. Graph the rational function $R(x) = \frac{3x^2 3x}{x^2 + x 12}$ on the interval [-10, 10]. How does f(x) behave when x is close to 3?
- 2. Graph the functions $\sin x$, $\sin 2x$, $\sin 3x$, $\sin 4x$, $\sin 5x$ on the same plot. What does the graph of $\sin nx$ look like if n is a very large number?
- 3. Graph the functions $\log_2(x)$, $\log_3(x)$, $\log_4(x)$, $\log_5(x)$ on the same plot. What does the graph of $\log_n(x)$ look like if n is a very large number?
- 4. Let $f(x) = \frac{x}{|x|}(1-x)$
 - (a) Graph the function on the interval [-2, 2].
 - (b) Find $\lim_{x\to 0} f(x)$, $\lim_{x\to 0^-} f(x)$, $\lim_{x\to 0^+} f(x)$.
 - (c) Express f as a piecewise function.