Maple Lab 1

Maple is a mathematical software first developed by the University of Waterloo in the 1980s, later developed commercially by the company Maplesoft.

1 Practice

Type the following, then press Enter.
(1) $35 / 6$
(2) evalf(35/6)
(3) $\operatorname{sqrt}(2),|-7|$
(4) evalf (\%)
(5) $34^{\wedge} 100$
(6) $x:=2$
(7) $y:=x^{\wedge} 2$
(8) $y:=x \wedge 3:$ (with the colon)
(9) y
(10) $\frac{2^{3}}{3^{4}}$ (highlight 2^{3}, then press the forward slash to jump to the denominator)
(11) $\frac{x+y+z}{3}$
(12) e^{2} (then Shift+Enter) evalf(\%)
(13) $\exp (2)$; (then Shift+Enter) evalf (\%)
(14) $\mathrm{a}:=\ln (2) ;($ then Shift+Enter) evalf (a)
(15) $\sin (\mathrm{pi}), \mathrm{pi}^{\wedge} 2, \sin (\mathrm{Pi}), \mathrm{Pi}^{\wedge} 2$
(16) $f:=x->x^{\wedge} 2$
(17) $f(2)$
(18) $\operatorname{plot}(f(x), x=-2 . .2)$

Right click on the plot, then choose Title. Enter the title $f(x)=x^{2}$. To enter in math mode, click the Math button on the menu bar.
(19) $\operatorname{plot}(f(x), x=-2.2, g r i d l i n e s)$
(20) ?plot
(21) $\mathrm{g}:=\mathrm{x}->\sin (\mathrm{x}) * \cos (\mathrm{x})$; (then Shift+Enter) $\operatorname{plot}(\mathrm{g}(\mathrm{x}), \mathrm{x}=-2$. 2)
$(22) f(g(x)) ;($ then Shift+Enter $) g(f(x))$
(23) $\operatorname{plot}([f(x), g(x)], x=-2.2)$
(24) $\mathrm{plot}\left(\left[\mathrm{x}, \mathrm{x}^{\wedge} 2, \mathrm{x}^{\wedge} 3\right], \mathrm{x}=0 \ldots 1.2\right)$
(25) $\mathrm{f}:=\mathrm{x}$->piecewise $(0<\mathrm{x}<1, \mathrm{x}, 1<\mathrm{x}<2,2, \mathrm{x}>2,3-\mathrm{x})$
(26) $\operatorname{plot}(f(x), x=0 . .3)$
(27) $\operatorname{limit}(f(x), x=1), \operatorname{limit}(f(x), x=1, \operatorname{left})$

Tip: to insert a computation cell before a current cell, press Ctrl + Shift + K. To insert one after, press Ctrl + Shift + J.

2 Exercises

1. Graph the rational function $R(x)=\frac{3 x^{2}-3 x}{x^{2}+x-12}$ on the interval $[-10,10]$. How does $f(x)$ behave when x is close to 3 ?
2. Graph the functions $\sin x, \sin 2 x, \sin 3 x, \sin 4 x, \sin 5 x$ on the same plot. What does the graph of $\sin n x$ look like if n is a very large number?
3. Graph the functions $\log _{2}(x), \log _{3}(x), \log _{4}(x), \log _{5}(x)$ on the same plot. What does the graph of $\log _{n}(x)$ look like if n is a very large number?
4. Let $f(x)=\frac{x}{|x|}(1-x)$
(a) Graph the function on the interval $[-2,2]$.
(b) Find $\lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 0^{-}} f(x), \lim _{x \rightarrow 0^{+}} f(x)$.
(c) Express f as a piecewise function.
