Maple Lab 2

Recall the following basic commands in Maple:

- To declare a function $f(x)=\sin \left(\pi x^{2}\right)$:

$$
f:=x->\sin \left(P i * x^{\wedge} 2\right)
$$

- To graph a function $f(x)$ on the interval $[a, b]$:

$$
\operatorname{plot}(f(x), x=a . . b)
$$

- To graph two functions $f(x)$ and $g(x)$ on the interval $[a, b]$ on the same plot:

$$
\operatorname{plot}([f(x), g(x)], x=a . . b)
$$

- To compute the limits $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)$:

$$
\begin{gathered}
\operatorname{limit}(f(x), x=a) \\
\operatorname{limit}(f(x), x=a, \operatorname{left}) \\
\operatorname{limit}(f(x), x=a, \text { right })
\end{gathered}
$$

1 Practice

Compute the following limits using the limit command. Try to justify the result by graphing the function. Can you also justify it using limit laws?
1.

$$
\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}
$$

2.

$$
\lim _{x \rightarrow 6^{-}} \frac{2 x+12}{|x+6|}
$$

3.

$$
\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}
$$

We write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if the value of $f(x)$ can be made arbitrarily large by choosing x sufficiently close to a (on either side of a). Note that this implies that the limit doesn't exist. However, we still say that the limit of $f(x)$ as x approaches a is equal to infinity, which is more informative than just saying the limit of $f(x)$ doesn't exist. The notations

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty, \lim _{x \rightarrow a^{+}} f(x)=\infty, \lim _{x \rightarrow a} f(x)=-\infty, \lim _{x \rightarrow a^{-}} f(x)=-\infty, \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

are similarly understood. If one of these six scenarios happens, then the vertical line $x=a$ is called a vertical asymptote of $f(x)$.

Graph the following functions and identify all vertical asymptotes.
4.

$$
\ln \left(x^{2}-1\right)
$$

5.

$$
\frac{x^{2}+1}{2 x^{4}+7 x^{3}+7 x^{2}+2 x}
$$

Use the command

$$
\text { factor }\left(2 * x^{\wedge} 4+7 * x^{\wedge} 3+7 * x^{\wedge} 2+2 * x\right)
$$

to confirm your observation in Problem 5.
We write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if the value of $f(x)$ can be made arbitrarily close to L by choosing x sufficiently large. The notation

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

is similarly understood. If one of these two scenarios happens, then the horizontal line $y=L$ is called a horizontal asymptote of $f(x)$. Try the command

$$
\operatorname{limit}(\sqrt{x+1}-\sqrt{x}, x=\text { infinity })
$$

6. To each of the following function, identify all horizontal asymptotes. Graph each function together with all of its horizontal asymptotes on the same plot.

$$
\frac{\sqrt{x^{2}+1}}{x+1}, \arctan (x), \frac{x}{e^{x}}, \frac{x^{5}}{e^{x}}, \frac{x^{10}}{e^{x}}
$$

How fast does the exponential function grow, as x goes to infinity, compared to a polynomial?
7. Try this procedure in Maple:
compare: $=\operatorname{proc}(\mathrm{f}, \mathrm{g})$ (then Shift+Enter)
limit(f/g, x=infinity); (then Shift+Enter)
end (then Enter)
Now type compare (x, sqrt ($\mathrm{x}^{\wedge} 2+1$))

2 To turn in

Turn in practice problems 1, 5, 6. Don't forget to justify your observation in Problem 5 using the command factor as explained.

