Maple Lab 4

In this lab, you will learn how to use Maple to

- plot a curve given by an equation,
- compute implicit differentiation,
- find local/global minimum/maximum of a function.

1 Practice

Plotting an equation and performing implicit differentiation:
If a curve is given by an equation

$$
\begin{equation*}
y=f(x), \tag{1}
\end{equation*}
$$

one can plot it using the command $\operatorname{plot}(\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a} . . \mathrm{b})$. However, not every curve is a graph of a function. The unit circle, for example, is not the graph of any function because it does not pass the Vertical Line Test. Nevertheless, it has a nice equation: $x^{2}+y^{2}=1$. More generally, any equation involving x and y, not necessarily of the form (1), describes a curve. For example, the equation $x^{2}-x y=y^{3}$ describes a curve which consists of all the points (x, y) satisfying that equation.

To plot such a curve, one can use the command implicitplot in the package plots of Maple. This package consists of a number of functionalities specialized for plotting. To call it, you enter the command

```
with(plots);
```

Now that the package is called, you can use the command

```
implicitplot(equation, x=a..b,y=c..d);
```

to plot the curve. Here a, b, c, d specify the window of x and y we want to observe. Maple will search in these ranges for pairs (x, y) that satisfy the equation. For example, to graph the equation $x^{2}-x y=y^{3}$ in the window $-2 \leq x \leq 2,-2 \leq y \leq 2$, you enter the command

```
implicitplot(x^2-x*y=y^3,x=-2..2,y=-2..2);
```

The result is Figure 1.
The curve is a quite rough. To improve the smoothness of the curve, you need to specify the value of gridrefine, the level of "refinement". The default value of gridrefine is 0 . The larger gridrefine is, the smoother the curve. For example, try

```
implicitplot(x^2-x*y=y^3,x=-2..2,y=-2..2,gridrefine=3);
```

To perform implicit differentiation on an equation involving x and y is to find y^{\prime} in terms of x and y. For example, consider the equation $x^{2}-x y+y^{2}=1$. To find y^{\prime}, you can use the command implicitdiff with the following syntax:

```
implicitdiff(x^2-x*y+y^2=1,y,x);
```

The result is y^{\prime} (when y is viewed as a function of x). If you switch the order of x and y :

```
implicitdiff(x^2-x*y+y^2=1,x,y);
```

the result is x^{\prime}, which is the derivative of x with respect to y when x is viewed as a function of y.

Figure 1

Optimization problems:

If a function f is differentiable on an interval (a, b) and has a peak (local maximum) or a valley (local minimum) at $c \in(a, b)$, then $f^{\prime}(c)=0$. This is known as the Fermat's theorem. A point x such that $f^{\prime}(x)=0$ is called a critical value of f.

Let us consider an example where $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+1$. To find all the critical points of f is to find all the roots of the equation $f^{\prime}(x)=0$. One can do so on Maple thanks to the command solve:

$$
\begin{aligned}
& f:=x->3 x^{\wedge} 4-4 x^{\wedge} 3-12 x^{\wedge} 2+1 ; \\
& \text { solve }(f)(x)=0, x) ;
\end{aligned}
$$

The result is $x=-1,0,2$. Note that the command solve aims to give exact roots of an equation. Sometimes, the exact roots do not have a nice form, or it may take Maple too long to compute. In that case, you can replace solve with fsolve, which will give you an approximate numerical value of the roots.

To find the absolute minimum or absolute maximum of f on the closed interval $[-2,3]$, we first compute all the critical points of f, i.e. the roots of $f^{\prime}(x)=0$, between -2 and 3 . Then we compare the values of f at these points with $f(-2)$ and $f(3)$. Specifically, you compare five numbers $f(-2), f(-1), f(0), f(2), f(3)$. The largest of them is the maximum. The smallest of them is the minimum.

You can also use the commands minimize and maximize on Maple:

```
minimize(3*x^4-4*x^3-12*x^2+1,x=-2..3);
maximize(3*x^4-4*x^3-12*x^2+1,x=-2..3);
```

which give -31 and 33 . To know the value(s) of x where $f(x)$ is maximum or minimum, you add the option location into the above commands. For example,

```
minimize(3*x^4-4*x^3-12*x^2+1,x=-2..3,location);
maximize(3*x^4-4*x^3-12*x^2+1,x=-2..3,location);
```


2 To turn in

1. Consider a curve with the equation

$$
2 y^{3}+y^{2}-y^{5}=x^{4}-2 x^{3}+x^{2}
$$

(a) Use Maple to plot the curve.
(b) At what points does this curve have horizontal tangent lines? Find the coordinates of these points.
(Hint: find y^{\prime} using implicitdiff and then set $y^{\prime}=0$ to solve for x.)
(c) At what points does this curve have vertical tangent lines? Find the coordinates of these points.
2. Let $f(t)=2 \cos t+\sin (2 t)$.
(a) Graph the function f on the interval $[0,2 \pi]$.
(b) Find all the critical points of f. For which value of t does f attain local maximum or local minimum?
(c) Find the absolute maximum and absolute minimum of f on the interval $[0,2 \pi]$. At what value(s) of t are the absolute minimum and maximum attained?

