Questions.
Reminder.

$$
\begin{aligned}
& y=f(x) \\
& x \longrightarrow x+\Delta x \\
& y \longrightarrow y+\Delta y \\
& \Delta y=f(x+\Delta x)-f(x) \text { : actual change of } y \\
& d y=f^{\prime}(x) \underbrace{d x}_{\Delta x} \text { :"linearized" change of } y
\end{aligned}
$$

Practice on the worksheet

En

Allowable error for the sade length is ± 0.01. What is the maximum ensor of the area?

$$
\begin{aligned}
& f(x)=x^{2} \\
& \Delta y=f(2+\Delta x)-f(2)=(2+\Delta x)^{2}-2^{2}=44 x+(\Delta x)^{2} \\
& \approx 4(001)+(0.01)^{2} \\
&=0.0401
\end{aligned}
$$

Note that when Δx is small, $(\Delta x)^{2}$ is much smaller than Δx.

$$
\Delta y=4 \Delta x+(4 x)^{2} \approx 4 \Delta x=4 d x=d y
$$

Optimization problem
This is the problem of finding min/max of a function.

This function doesn't have min or max. But if we restrict it on an interval
then if has a min and max.
The peaks are called local maximum. the valleys are called local minimum

