Lecture 8

Limit laws:

* Plug in (for continuous function)
* Addition law
* Multiplication/quotient law
* Composition law

If $\quad \lim _{x \rightarrow a} f(x)=b, \quad \lim _{x \rightarrow b} g(x)=c$
then $\quad \lim _{x \rightarrow 2 a} f(g(x))=c$
Ex $\quad \lim _{x \rightarrow 0} \cos ^{4} x$

$$
x \xrightarrow[g]{\operatorname{cosin} e} \cos x \xrightarrow[f]{14} \cos ^{4} x
$$

As $x \rightarrow 0, \cos x \rightarrow \cos 0=1, \cos ^{4} x \rightarrow \cos ^{4} 0=1^{4}=1$.

* Squeeze theorem

If $\quad f(x) \leq g(x) \quad \forall x$
then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$

$$
\text { If } \begin{cases}g(x) \leq f^{(x)} \leq h(x) & \forall x \text { near a } \\ \lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L\end{cases}
$$

Then $\lim _{x \rightarrow a} f(x)=L$.

En:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x \sin \frac{1}{x} \\
& \lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}
\end{aligned}
$$

