MATH 251, MIDTERM, FALL 2022

INSTRUCTOR: TUAN PHAM

Name	

Instructions:

- This is a closed-book exam, 50 minutes long.
- A single sided, handwritten, 3" x 5" note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.
- For Problems 1-7, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 8, 9 and 10, make sure to show all necessary steps. Mysterious answers will receive little or no credit.
 - 1. A B O D
 - 2. (A) (B) (C) (D)
 - 3. (A) (B) (C) (D)
 - 4. (A) (B) (C) (D)
 - 5. (A) (B) (C) (D)
 - 6. A B C D
 - 7. (A) (B) (C) (D)

Problem	Possible points	Earned points
1-7	14	
8	5	
9	5	
10	5	
Total	29	

Problem 1. (2 points) Let $f(x) = x^2 + 1$ and $g(x) = \frac{1}{x}$. Which of the following is the composite function $f \circ g$? That is, function f(g(x)).

- A. $\frac{1}{x^2+1}$
- B. $\frac{2}{x^2}$
- C. $\frac{1}{x^2} + 1$
- D. $\frac{1}{(x+1)^2}$

Problem 2. (2 points) Suppose a function f is not defined at x = a. Which of the following statements is false?

- A. f is not continuous at a.
- B. f is not differentiable at a.
- C. $\lim_{x\to a} f(x)$ does not exist.

Problem 3. (2 points) If the $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$ then f is discontinuous at a. True or false?

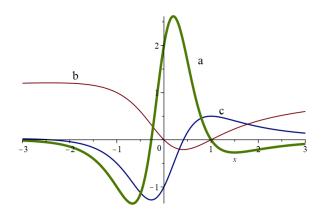
- A. True
- B. False

Problem 4. (2 points) Choose the correct value of the limit

$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$$

- A. 1
- B. -1
- C. ∞
- D. $-\infty$

Problem 5. (2 points) Choose the correct value of the limit


$$\lim_{x \to \infty} \frac{x(2x^2 - 3x + 5)}{(x^2 + 1)(x + 1)}$$

- A. 1
- B. 2
- C. 0
- D. ∞

Problem 6. (2 points) Let $f(x) = x + \frac{x}{x+1}$. Find f'(1).

- A. -1/4
- B. 1/4
- C. 3/4
- D. 5/4

Problem 7. (2 points) The figure below contains the graphs of f, f', and f''. The graphs of these functions in that order are

- A. a, b, c
- $B.\ a,\,c,\,b$
- C. b, a, c
- D. b, c, a

Problem 8. (5 points) Evaluate the polynomial $x^3 - 3x + 1$ at x = -2, -1, 0, 1, 2 and explain why it has three distinct roots.

$$f(x) = x^3 - 3x + 1 \text{ is a continuous function.}$$

$$f(x) = -1 < 0$$

$$f(-1) = 1 > 0$$

$$f(-1) = 1 > 0$$

$$f(0) = 0 > 0$$

$$f(0) = 0 > 0$$

$$f(1) = -1 < 0$$

$$f(1) = -1 < 0$$

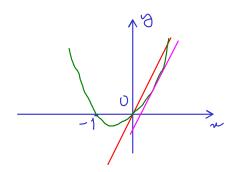
$$f(2) = 3 > 0$$

$$f(2) = 3 > 0$$

$$f(3) = 3 > 0$$

$$f(4) = 3 > 0$$

$$f(5) =$$


By Intermediate value theorem, f has a root in (-2,-1), a root in (0,1), and a root in (1,2). Therefore, it has three distinct roots.

Problem 9. (5 points) Use the limit laws you learned to find the limit

$$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x^2 + 4x + 3}$$

$$\frac{x^{2}-2x-3}{x^{2}+4x+3} = \frac{(x+1)(x-3)}{(x+1)(x+3)} = \frac{x-3}{x+3} \xrightarrow{x\to -1} \frac{-l-3}{-l+3} = -2.$$

Problem 10. (5 points) Find the point on the parabola $y = x^2 + x$ at which the tangent line to the parabola is parallel to the line y = 3x. What is the equation for the tangent line at that point?

 $f(n) = n^2 + \lambda$ f'(n) = 2n + | is the slope of the tangent line to the graph of f at (x, f(x)).

For the tangent line to be parallel to the line y=3n, the two slopes must be equal. That α , $\beta'(n)=3$ which leads to n=1.

At n=1, $\beta(n)=\beta(n)=2$. At the point (1,21, the tangent line to the parabola is parallel to y=3n. The equation of the tangent line is

y-2=3(n-1)or equivalently, y=3n-1.