Outcome: the most basic result of an observation/experiment
Event: collection of outcomes sharing a certain common property
Probability of event A: $\quad P(A)=\frac{\text { number of outcomes } A \text { consists of }}{\text { number of all possible outcomes }}$
$\boldsymbol{P}(\boldsymbol{n o t} \boldsymbol{A})=1-\mathrm{P}(\mathrm{A})$
Odds for $\mathbf{A}=\frac{P(A)}{P(\operatorname{not} A)}$
Odds against $\mathbf{A}=\frac{\mathrm{P}(\text { not } \mathrm{A})}{\mathrm{P}(\mathrm{A})}$
Probability distribution: distribution of outcomes (histogram of relative frequencies)
Multiplication principle: Assume that a task can be broken up into two consecutive steps. If step 1 can be performed in m ways and for each of these, step 2 can be performed in n ways, then the task itself can be performed in $\mathrm{m} \times \mathrm{n}$ ways.

1) How many outcomes are possible if you toss five coins?
2) How many possible outcomes are there if you toss three 6 -sided dice?
3) Draw a random card from a standard deck of 52 cards. Determine the probability of getting a red card (heart or diamond).
4) A restaurant has a special menu that features two choices of salad, eight choices of entree, and six choices of dessert. How many different three-course meals could you order?
5) What is the probability of not tossing 3 heads with three fair coins?
6) What is the probability of tossing at least 1 head with three fair coins?
7) Find the odds for and the odds against the event of rolling a die and getting a 4 .
8) Find the odds for and the odds against the event of rolling two dice and getting at least one 6 .
9) Make a probability distribution for the sum of the dice when two fair, 6 -sided dice are rolled together. What is the most probable sum?
