Arrangement with repetition: from n items, the number of arrangements of r items, allowing repetition, is n^{r}.

Permutation: from n items, the number of arrangements of r items, not allowing repetition, is

$$
\frac{n!}{(n-r)!}=n \times(n-1) \times \ldots \times(n-r+1)
$$

Combination: from n items, the number of arrangements of r items, disregarding order and not allowing repetition, is

$$
\frac{n!}{(n-r)!r!}=\frac{n \times(n-1) \times \ldots \times(n-r+1)}{1 \times 2 \times \ldots \times r}
$$

1) Calculate

$$
8!\quad \frac{9!}{4!} \quad \frac{10!}{3!7!}
$$

2) How many different seven-digit phone numbers can be formed?
3) How many different five-character passwords can be formed from the lowercase letters of the alphabet if repetition is not allowed?
4) A city council with eight members must elect a four-person executive committee consisting of a mayor, deputy mayor, secretary, and treasurer. How many executive committees are possible?
5) How many 6-person lineups can be formed from a 10-player volleyball roster? (In volleyball, every player plays every position.)
6) How many different telephone numbers of the form $a a a-b b b-c c c c$ can be formed if the area code $a a a$ can only begin with the numbers 2 through 7 and the exchange $b b b$ cannot begin with 0 ?
7) Find the probability of being dealt a 10 , jack, queen, king, and ace, all of the same suit, from a standard 52-card deck.
8) The U.S. Postal Service uses both five-digit and nine-digit ZIP codes.
(a) How many five-digit ZIP codes are available to the U.S. Postal Service?
(b) For a U.S. population of 300 million people, what is the average number of people per fivedigit ZIP code if all possible ZIP codes are used?
(c) How many nine-digit ZIP codes are available to the U.S. Postal Service? Could everyone in the United States have his or her own personal nine-digit ZIP code?
