Math 213 - Calculus II - Fall 2023
Class Information
Instructor: Tuan Pham
Class meetings: M, T, W, Th, F: 8 - 8:50 AM at SCB 303
[Syllabus]
[Class schedule]
[Canvas]
[WebAssign]
Office Hours
Monday, Wednesday, Friday: 12:30 - 2 PM at SCB 311, or by appointment
Assignments
Homework problems are to be done in WebAssign. List of sections covered is here.
Mathematica labs are to be submitted on Canvas as a pdf file.
Quizzes are given in class. See the class schedule above.
Lecture notes
Final Exam review, cheat sheet
Lecture 60 (Nov 30): power series representation of a function, Taylor series
Lecture 59 (Nov 29): radius of convergence, interval of convergence (cont.)
Lecture 58 (Nov 28): radius of convergence, interval of convergence
Lecture 57 (Nov 27): power series
Lecture 56 (Nov 22): practice on converge tests; Worksheet
Lecture 55 (Nov 21): Root Test and Ratio Test
Lecture 54 (Nov 20): conditional and absolute convergence
Lecture 53 (Nov 17): alternating series and Alternating Series Test
Lecture 52 (Nov 16): practice with Divergence / Integral / Comparison Test; Worksheet
Lecture 51 (Nov 15): Divergence Test, Integral Test
Lecture 50 (Nov 14): Comparison Test (cont.)
Lecture 49 (Nov 13): telescoping series, Comparison Test
Lecture 48 (Nov 10): series, geometric series
Lecture 47 (Nov 9): techniques to find the limit of a sequence
Lecture 46 (Nov 8): sequences and limit of a sequence
Midterm II review, cheat sheet
Lecture 45 (Nov 3): polar equation of conic sections
Lecture 44 (Nov 2): practice with conic sections; Worksheet
Lecture 43 (Nov 1): focus-directrix description of conic sections
Lecture 42 (Oct 31): Cartesian description and focus-focus description of ellipse; Worksheet
Lecture 41 (Oct 30): enclosed area of polar curve, conic description of conic sections
Lecture 40 (Oct 27): tangent line, length, enclosed area of a polar curve; Worksheet
Lecture 39 (Oct 26): graphing in polar coordinates
Lecture 38 (Oct 25): polar coordinates
Lecture 37 (Oct 24): Calculus on parametric curves
Lecture 36 (Oct 23): calculus on parametric curves
Lecture 35 (Oct 20): draw parametric curves
Lecture 34 (Oct 19): population models: Malthus's model and Verhulst's model
Lecture 33 (Oct 18): direction fields
Lecture 32 (Oct 17): Euler's method (cont.); Worksheet
Lecture 31 (Oct 16): Euler's method; Worksheet
Lecture 30 (Oct 13): practice on Lab 3
Lecture 29 (Oct 12): direction fields and Euler's method
Lecture 28 (Oct 11): linear first order equations (cont.)
Lecture 27 (Oct 10): linear first order equations; Worksheet
Lecture 26 (Oct 9): separable equations (cont.)
Lecture 25 (Oct 6): separable equations; Worksheet
Lecture 24 (Oct 5): differential equations; is it easy to guess a solution?
Lecture 23 (Oct 4): surface of revolution (cont.)
Midterm I review
Lecture 22 (Sep 29): another example on arclength; surface of revolution
Lecture 21 (Sep 28): length of the graph of a function
Lecture 20 (Sep 27): improper integrals (cont.)
Lecture 19 (Sep 26): improper integrals
Lecture 18 (Sep 25): left endpoint, right endpoint, midpoint, trapezoid Riemann sum
Lecture 17 (Sep 22): approximate definite integrals using Riemann sums
Lecture 16 (Sep 21): partial fraction decomposition when Q has no real roots; arctan function
Lecture 15 (Sep 20): partial fraction decomposition when long division is needed or Q has repeated roots
Lecture 14 (Sep 19): partial fraction decomposition for \(\frac{P(x)}{Q(x)}\) where Q is fully factored and deg P \(<\)deg Q
Lecture 13 (Sep 18): polynomials, degree, roots, rational functions
Lecture 12 (Sep 15): trigonometric substitution for \(\sqrt{a^2-x^2}\); Worksheet
Lecture 11 (Sep 14): trigonometric substitution for \(sin^mx\cos^nx\), where m and n are even
Lecture 10 (Sep 13): trigonometric substitution for \(sin^mx\cos^nx\), where m or n is odd
Lecture 9 (Sep 12): substitution combined with integration by parts; Worksheet
Lecture 8 (Sep 11): integration technique - integration by parts
Lecture 7 (Sep 8): integration technique - substitution method
Lecture 6 (Sep 7): cylindrical shell method; Worksheet
Lecture 5 (Sep 6): cross sectional method
Lecture 4 (Sep 5): volume of solid of revolution
Lecture 3 (Sep 1): area between curves (cont.); solid of revolution
Lecture 2 (Aug 31): area between curves; Worksheet
Lecture 1 (Aug 30): introduction
Supplement materials
Conic section formula sheet
Trigonometric identities printable table
Mathematica instruction from the Wolfram company:
- 15-minute video: Hands-on start to Mathematica
- Fast introduction for math students
- Mathematica as a programming tool: An elementary introduction
Use Mathematica on JupyterLab:
- Installation guide
- Video instruction, sample lab report:
pdf,
ipynb
Links
Joseph F. Smith Library, Testing Center,
Math Lab
|
This page was last modified on Saturday, Dec 2, 2023.
|
|