Math 213 - Calculus II - Fall 2023

Class Information

Instructor: Tuan Pham
Class meetings: M, T, W, Th, F: 8 - 8:50 AM at SCB 303
[Syllabus]   [Class schedule]   [Canvas]   [WebAssign]  

Office Hours

Monday, Wednesday, Friday: 12:30 - 2 PM at SCB 311, or by appointment

Assignments

  • Homework problems are to be done in WebAssign. List of sections covered is here.
  • Mathematica labs are to be submitted on Canvas as a pdf file.
  • Quizzes are given in class. See the class schedule above.
    Quizzes Labs
    Quiz 1 Lab 0
    Quiz 2 Lab 1
    Quiz 3 Lab 2
    Quiz 4 Lab 3
    Quiz 5 Lab 4
    Quiz 6 Lab 5
    Quiz 7 Lab 6
    Quiz 8
    Quiz 9
    Quiz 10
  • Lecture notes

  • Final Exam review, cheat sheet
  • Lecture 60 (Nov 30): power series representation of a function, Taylor series
  • Lecture 59 (Nov 29): radius of convergence, interval of convergence (cont.)
  • Lecture 58 (Nov 28): radius of convergence, interval of convergence
  • Lecture 57 (Nov 27): power series
  • Lecture 56 (Nov 22): practice on converge tests; Worksheet
  • Lecture 55 (Nov 21): Root Test and Ratio Test
  • Lecture 54 (Nov 20): conditional and absolute convergence
  • Lecture 53 (Nov 17): alternating series and Alternating Series Test
  • Lecture 52 (Nov 16): practice with Divergence / Integral / Comparison Test; Worksheet
  • Lecture 51 (Nov 15): Divergence Test, Integral Test
  • Lecture 50 (Nov 14): Comparison Test (cont.)
  • Lecture 49 (Nov 13): telescoping series, Comparison Test
  • Lecture 48 (Nov 10): series, geometric series
  • Lecture 47 (Nov 9): techniques to find the limit of a sequence
  • Lecture 46 (Nov 8): sequences and limit of a sequence
  • Midterm II review, cheat sheet
  • Lecture 45 (Nov 3): polar equation of conic sections
  • Lecture 44 (Nov 2): practice with conic sections; Worksheet
  • Lecture 43 (Nov 1): focus-directrix description of conic sections
  • Lecture 42 (Oct 31): Cartesian description and focus-focus description of ellipse; Worksheet
  • Lecture 41 (Oct 30): enclosed area of polar curve, conic description of conic sections
  • Lecture 40 (Oct 27): tangent line, length, enclosed area of a polar curve; Worksheet
  • Lecture 39 (Oct 26): graphing in polar coordinates
  • Lecture 38 (Oct 25): polar coordinates
  • Lecture 37 (Oct 24): Calculus on parametric curves
  • Lecture 36 (Oct 23): calculus on parametric curves
  • Lecture 35 (Oct 20): draw parametric curves
  • Lecture 34 (Oct 19): population models: Malthus's model and Verhulst's model
  • Lecture 33 (Oct 18): direction fields
  • Lecture 32 (Oct 17): Euler's method (cont.); Worksheet
  • Lecture 31 (Oct 16): Euler's method; Worksheet
  • Lecture 30 (Oct 13): practice on Lab 3
  • Lecture 29 (Oct 12): direction fields and Euler's method
  • Lecture 28 (Oct 11): linear first order equations (cont.)
  • Lecture 27 (Oct 10): linear first order equations; Worksheet
  • Lecture 26 (Oct 9): separable equations (cont.)
  • Lecture 25 (Oct 6): separable equations; Worksheet
  • Lecture 24 (Oct 5): differential equations; is it easy to guess a solution?
  • Lecture 23 (Oct 4): surface of revolution (cont.)
  • Midterm I review
  • Lecture 22 (Sep 29): another example on arclength; surface of revolution
  • Lecture 21 (Sep 28): length of the graph of a function
  • Lecture 20 (Sep 27): improper integrals (cont.)
  • Lecture 19 (Sep 26): improper integrals
  • Lecture 18 (Sep 25): left endpoint, right endpoint, midpoint, trapezoid Riemann sum
  • Lecture 17 (Sep 22): approximate definite integrals using Riemann sums
  • Lecture 16 (Sep 21): partial fraction decomposition when Q has no real roots; arctan function
  • Lecture 15 (Sep 20): partial fraction decomposition when long division is needed or Q has repeated roots
  • Lecture 14 (Sep 19): partial fraction decomposition for \(\frac{P(x)}{Q(x)}\) where Q is fully factored and deg P \(<\)deg Q
  • Lecture 13 (Sep 18): polynomials, degree, roots, rational functions
  • Lecture 12 (Sep 15): trigonometric substitution for \(\sqrt{a^2-x^2}\); Worksheet
  • Lecture 11 (Sep 14): trigonometric substitution for \(sin^mx\cos^nx\), where m and n are even
  • Lecture 10 (Sep 13): trigonometric substitution for \(sin^mx\cos^nx\), where m or n is odd
  • Lecture 9 (Sep 12): substitution combined with integration by parts; Worksheet
  • Lecture 8 (Sep 11): integration technique - integration by parts
  • Lecture 7 (Sep 8): integration technique - substitution method
  • Lecture 6 (Sep 7): cylindrical shell method; Worksheet
  • Lecture 5 (Sep 6): cross sectional method
  • Lecture 4 (Sep 5): volume of solid of revolution
  • Lecture 3 (Sep 1): area between curves (cont.); solid of revolution
  • Lecture 2 (Aug 31): area between curves; Worksheet
  • Lecture 1 (Aug 30): introduction
  • Supplement materials

  • Conic section formula sheet
  • Trigonometric identities printable table
  • Mathematica instruction from the Wolfram company:
       - 15-minute video: Hands-on start to Mathematica
       - Fast introduction for math students
       - Mathematica as a programming tool: An elementary introduction
  • Use Mathematica on JupyterLab:
       - Installation guide
       - Video instruction, sample lab report: pdf, ipynb
  • Links

    Joseph F. Smith Library, Testing Center, Math Lab

    This page was last modified on Saturday, Dec 2, 2023.