
Lab 6

In this lab, you will practice with sequences, series, and power series on Mathematica. Specifically,
you will learn how to

• Define and evaluate terms and limit of a sequence,

• Evaluate partial sums and series,

• Find the radius of convergence and interval of convergence of a power series,

• Approximate a function by polynomials.

1 Define and evaluate terms and limit of a sequence

(1) Recall that a sequence is a function from N to R. Thus, it can be defined the same way we

define a function. For example, the sequence an = (−1)n+1

2n can be defined as follows.

a[n_]:=(-1)^(n+1)/2^n

(2) To view the first 20 terms of this sequence, try the command

Table[{n, a[n]}, {n, 1, 20}] // TableForm

To convert the fractions into decimal-point numbers, replace a[n] in the command by N[a[n]].
If you want 4 significant digits, then use N[a[n],4] instead.

(3) Because a sequence is also a function, you can graph a sequence as you can with a function.
However, since the variable n is a natural number, you will use DiscretePlot instead of Plot.

DiscretePlot[a[n], {n,1,20}, PlotRange -> Full]

The horizontal axis shows the indices n and the vertical axis shows the values of an.

(4) A sequence can also be defined by a recursive formula. For example, the Fibonacci sequence
a1 = 1, a2 = 1, an = an−1 + an−2 can be defined in Mathematica as

a[1] := 1

a[2] := 1

a[n_] := a[n - 1] + a[n - 2]

Find the first 20 terms of this sequence.

(5) Find the first 20 terms of the sequence defined recursively as

a0 = a1 = a2 = 1, an = an−1 − 2an−2 + an−3

Graph the sequence using DiscretePlot. Does the sequence appear to converge or diverge?

(6) If the general formula for an is available, you can simply use the command Limit. For example,
to compute

lim
n→∞

2n2 + n sin(n)

n2 + 1

try the following:
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a[n_] := (2 n^2 + n*Sin[n])/(n^2 + 1)

Limit[a[n], n -> Infinity]

(7) Graph the above sequence using DiscretePlot to confirm the result.

The command Limit used above doesn’t work well with sequences that are defined recursively. To
find the limit of such a sequence, we use the command RSolveValue instead. The syntax is as
follows:

RSolveValue[eqn, expr, n]

where eqn is a list consisting of the recursive formula and all initial conditions, expr is whatever
expression you want to compute, and n is the index variable.

(8) For example, we want to find the limit of the sequence

an+1 =
an + nan−1

n + 1
, a0 = 0, a1 = 1.

Symbolically, the limit of an may be viewed as a∞ (as if n is substituted by ∞). Thus, a∞ is
the value we want to find. Try the following:

RSolveValue[{a[n + 1] == (a[n] + n a[n - 1])/(n + 1),

a[0] == 0, a[1] == 1}, a[Infinity], n]

(9) Consider a sequence defined recursively as follows:

an+1 =
2an + 3

an + 4
, a0 = −2.

Find the limit of the sequence using RSolveValue. Then graph the sequence to confirm the
result.

(10) Consider the series
∞∑
n=1

lnn

n2

To define the k’th partial sum, do the following:

a[n_] := Log[n]/n^2;

s[k_] := Sum[a[n], {n, 1, k}];

(11) To get an idea what if the partial sums converge, find the first 50 (or more) partial sums using
the command Table and graph them using DiscretePlot. From the table and graph, can you
guess if the series

∑
an converges or diverges?

(12) You can find the value of the series by

Sum[a[n], {n,1,Infinity}]

If this command takes too long, change Sum to NSum.

(13) Repeat Exercises (10), (11), (12) for the series

∞∑
n=1

n2 − 3n sinn

n4 + 1
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2 Find radius and interval of convergence

Recall that a power series centered at x0 is a series of the form
∑

an(x − x0)
n. On its interval

of convergence, a power series defines a function. Not counting the endpoints, the interval of
convergence is always a symmetric interval about the center of the power series. Consider the
power series

∞∑
n=0

(−3)nxn√
n + 1

To find the radius of convergence, one can use either the Ratio test or the Root test. Let

an =
(−3)nxn√

n + 1

The Ratio test says that if the limit

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

exists and L < 1 then the series converges. If L > 1 then the series diverges. If L = 1 then the test
fails.

(14) We compute the limit L as follows.

a[n_] := (-3)^n*x^n/Sqrt[n + 1]

Clear[n]

L = Limit[Abs[a[n + 1]/a[n]], n -> Infinity]

Here, Abs is the absolute value function.

(15) The values of x that makes L < 1 belongs to the interval of convergence. We solve the inequality
L < 1 as follows.

Reduce[L < 1, x, Reals]

The option Reals in the above command is to indicate that we are interested in x as a real
number (as opposed to complex number).

(16) You will see that the inequality L < 1 gives x ∈
(
−1

3 ,
1
3

)
. The radius of convergence is a half of

the length of this interval, which is R = 1
3 . The endpoints −1/3 and 1/3 have to be considered

manually and separately. Mathematica can provide some insights as follows. Let f(x) denote
the value of the power series.

f[x_] := Sum[(-3)^n*x^n/Sqrt[n + 1], {n, 0, Infinity}]

We can attempt to evaluate f at x = 1/3 and x = −1/3.

f[1/3]

f[-1/3]

Mathematica will show a warning on the second command, indicating that f is not defined at
x = −1/3. Therefore, the interval of convergence is (−1/3, 1/3].

Now consider the power series
∞∑
n=0

n(x + 2)n

3n+1

Follow Exercises (14), (15), (16) to do the following exercises.
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(17) What is the center of this power series? Find the radius of convergence.

(18) Find the interval of convergence.

(19) Approximate the value of the power series at x = 0.

3 Approximate the value of the power series

In many applications, it is helpful to approximate a function with polynomials. Polynomials are
easier to take derivative or integral, and more computer-friendly because they involve only the
addition, subtraction, and multiplication. To approximate a function by a polynomial, we simply
truncate the Taylor series of the function. Recall that the Taylor series of a function f at x0 is
given by

∞∑
n=0

an(x− x0)
n, where an =

f (n)(x0)

n!

Truncating this series at a power m, we get an m’th degree Taylor polynomial

Tm(x) =
m∑

n=0

an(x− x0)
n

and f is approximated by f(x) ≈ Tm(x). The approximation is good when x is close to x0, which
is the center of the power series, and gets worse as x is far away from the center. To maintain a
good approximation when x is far away from x0, you will have to increase the degree m. The larger
m is, the farther away x can be from x0 and the approximation is still good.

To obtain the Taylor polynomials Tm centered at x0 = 0 of a function f , we use the command
Series with the syntax

Series[f, {x, 0, m}]

(20) For example, consider the function f(x) = sinx + cos(x/
√

2). Try the command

f[x_] := Sin[x] + Cos[x/Sqrt[2]]

Series[f[x], {x, 0, 7}]

The output will look something like

1 + x− x2

4
− x3

6
+

x4

96
+

x5

120
− x6

5760
− x7

5040
+ O

(
x8
)

Therefore, the first seven Taylor polynomials T1, T2, ..., T7 are

T1(x) = 1 + x

T2(x) = 1 + x− x2

4

T3(x) = 1 + x− x2

4
− x3

6
...

T7(x) = 1 + x− x2

4
− x3

6
+

x4

96
+

x5

120
− x6

5760
− x7

5040

The term O(x8) denotes the error term, which is the difference between the function f and the
polynomial T7.
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(21) To see how well each Taylor polynomial approximates the function f , we graph them together
on the same plot. For example, try the following to graph f and T1 on the same plot.

T1[x_] := 1+x

Plot[{f[x], T1[x]}, {x,-3,3}]

(22) Use the fashion above to graph each of the functions T2, T3, ..., T7 (one by one, not all at once)
together with f on the same plot. What do you observe?

(23) One way to quantify how good the approximation f(x) ≈ Tm(x) is on the interval x ∈ [−3, 3]
is by looking at the maximum value of |f(x)− Tm(x)| on the interval [−3, 3]. Try

MaxValue[{Abs[f[x] - T1[x]], -3 <= x <= 3}, x]

NMaxValue[{Abs[f[x] - T1[x]], -3 <= x <= 3}, x]

(24) For m = 2, 3, ..., 7, find the maximum of |f(x)− Tm(x)| on the interval [−3, 3].

(25) How large does m have to be so that f(x) ≈ Tm(x) with an error less than 0.01 for any
x ∈ [−3, 3] ?

4 To turn in

Submit your implementation of Exercises (1) - (25) as a single pdf file.
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