Quiz 8 11/13/2023

1. Identify the type of conic section whose equation in Cartesian coordinates is given by $x^2-2x = y^2$. Find the vertices, foci, eccentricity, directrix.

2. A conic section has an equation in polar coordinates as follows:

$$r = \frac{4}{5 - 4\sin\theta}$$

Find the eccentricity, identify the conic, give an equation of the directrix, and sketch the conic.

Conic Section formulas

	Ellipse	Parabola	Hyperbola
Cartesian equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a \ge b)$	$y^2 = 4px \ (p > 0)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
Shape	0	0	0
Vertex	$(\pm a, 0)$	(0,0)	$(\pm a, 0)$
Foci	$(\pm c, 0)$ where $c = \sqrt{a^2 - b^2}$	(<i>p</i> ,0)	$(\pm c, 0)$ where $c = \sqrt{a^2 + b^2}$
Eccentricity	$e = \frac{c}{a}$	<i>e</i> = 1	$e = \frac{c}{a}$
Directrices	$x = \pm d$ where $d = \frac{a^2}{c}$	x = -d where $d = p$	$x = \pm d$ where $d = \frac{a^2}{c}$
Polar equation (the pole being at one of the foci)	$r = \frac{ed}{1 \pm e \cos \theta}$ (<i>d</i> is the distance from the pole to the directrix)		