> Quiz 8
> $11 / 13 / 2023$

1. Identify the type of conic section whose equation in Cartesian coordinates is given by $x^{2}-2 x=$ y^{2}. Find the vertices, foci, eccentricity, directrix.
2. A conic section has an equation in polar coordinates as follows:

$$
r=\frac{4}{5-4 \sin \theta}
$$

Find the eccentricity, identify the conic, give an equation of the directrix, and sketch the conic.

Conic Section formulas

	Ellipse	Parabola	Hyperbola
Cartesian equation	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a \geq b)$	$y^{2}=4 p x \quad(p>0)$	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Shape			
Vertex	$(\pm a, 0)$	$(0,0)$	$(\pm a, 0)$
Foci	$\begin{aligned} & (\pm c, 0) \text { where } \\ & c=\sqrt{a^{2}-b^{2}} \end{aligned}$	$(p, 0)$	$\begin{aligned} & (\pm c, 0) \text { where } \\ & c=\sqrt{a^{2}+b^{2}} \end{aligned}$
Eccentricity	$e=\frac{c}{a}$	$e=1$	$e=\frac{c}{a}$
Directrices	$x= \pm d \text { where } d=\frac{a^{2}}{c}$	$x=-d$ where $d=p$	$x= \pm d$ where $d=\frac{a^{2}}{c}$
Polar equation (the pole being at one of the foci)	$r=\frac{e d}{1 \pm e \cos \theta}$	the distance from the p	le to the directrix)

