Worksheet 8

10/17/2023

1. Consider the initial-value problem $y^{\prime}=x+y^{2}, y(-1)=0$. Use Euler's method to estimate $y(-0.9), y(-0.8), y(-0.7), y(-0.6), y(-0.5)$.
2. Identify the direction field corresponding to each given differential equation. See the figures on the next page.
\qquad

$$
y^{\prime}=t y^{2}
$$

\qquad

$$
y^{\prime}=\sin (t y)
$$

$$
y^{\prime}=(t-1) y
$$

\qquad

$$
y^{\prime}=t y
$$

3. Suppose a population $P(t)$ satisfies

$$
\frac{d P}{d t}=0.4 P-0.001 P^{2}, \quad P(0)=50
$$

where t is measured in years.
(a) What is the carrying capacity?
(b) What is $P^{\prime}(0)$?
(c) When will the population reach 50% of the carrying capacity?

(a)

(c)

(b)

(d)

