Worksheet 11/6/2024

Normal distribution: a special symmetric, bell-shaped distribution, with a single peak. The normal distribution is completely identified by its mean and standard deviation.

68-95-99.7 rule: about 68%, 95%, 99.7% of data points fall within 1, 2, 3 standard deviations of the mean, respectively

Standard score (z-score) of a data value = the number of standard deviations from the mean

$$z = \frac{data\ value\ -\ mean}{standard\ deviation}$$

Percentile of a data value = the percentage of all data points that are less than or equal to it.

- 1) State whether and why you would expect each of the following data sets to be normally distributed.
- a) Scores awarded to a large class on an easy exam
- b) The weights of bags of flour labeled "25 pounds"
- c) The last digit of the Social Security number of 1000 randomly selected people
- 2) A set of test scores is normally distributed with a mean of 100 and a standard deviation of 20. Use the 68-95-99.7 rule to find the percentage of scores in each of the following categories.
- (a) Greater than 100
- (b) Less than 80
- (c) Between 80 and 120

- 3) The SAT exams are designed so that their scores are normally distributed with a mean of 500 and a standard deviation of 100.
- (a) Find the standard score and percentile of a score of 525. Explain the meaning of the percentile.
- (b) Find the standard score and percentile of a score of 443. Explain the meaning of the percentile.
- (c) Find the standard score and percentile of a score of 287. Explain the meaning of the percentile.

z-score	Percentile	z-score	Percentile	z-score	Percentile	z-score	Percentile
-3.5	0.02	-1.0	15.87	0.0	50.00	1.1	86.43
-3.0	0.13	-0.95	17.11	0.05	51.99	1.2	88.49
-2.9	0.19	-0.90	18.41	0.10	53.98	1.3	90.32
-2.8	0.26	-0.85	19.77	0.15	55.96	1.4	91.92
-2.7	0.35	-0.80	21.19	0.20	57.93	1.5	93.32
-2.6	0.47	-0.75	22.66	0.25	59.87	1.6	94.52
-2.5	0.62	-0.70	24.20	0.30	61.79	1.7	95.54
-2.4	0.82	-0.65	25.78	0.35	63.68	1.8	96.41
-2.3	1.07	-0.60	27.43	0.40	65.54	1.9	97.13
-2.2	1.39	-0.55	29.12	0.45	67.36	2.0	97.72
-2.1	1.79	-0.50	30.85	0.50	69.15	2.1	98.21
-2.0	2.28	-0.45	32.64	0.55	70.88	2.2	98.61
-1.9	2.87	-0.40	34.46	0.60	72.57	2.3	98.93
-1.8	3.59	-0.35	36.32	0.65	74.22	2.4	99.18
-1.7	4.46	-0.30	38.21	0.70	75.80	2.5	99.38
-1.6	5.48	-0.25	40.13	0.75	77.34	2.6	99.53
-1.5	6.68	-0.20	42.07	0.80	78.81	2.7	99.65
-1.4	8.08	-0.15	44.04	0.85	80.23	2.8	99.74
-1.3	9.68	-0.10	46.02	0.90	81.59	2.9	99.81
-1.2	11.51	-0.05	48.01	0.95	82.89	3.0	99.87
-1.1	13.57	0.0	50.00	1.0	84.13	3.5	99.98