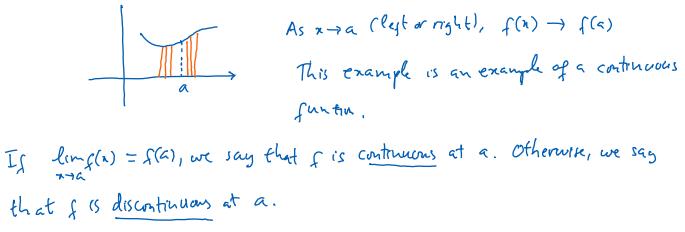
Lecture 7 Friday, September 13, 2024 1:02 AM

Last time, we described limits *numerically*. It is not always a reliable method. For example, consider the limit

$$\lim_{x \to 0} \frac{sqrt(x^4 + 100) - 10}{x^{4}}$$

The table of values:

x	f(x)
0.5	0.049995
0.1	0.049999
0.01	0.0500000
0.001	0


You see that the calculator makes an erroer

Today, we will describe limits *graphically*. In the next section (Section 2.3), you will learn how to find a limit *algebraically*. It is most fun to interpret limits graphically.

$$\lim_{x \to a} f(x) = L$$

means f(x) gets closer to L as x gets closer to a, but not equal to a.

Example:

Some examples with piecewise functions

One-sided limits: left-hand limit and right-hand limit. Example: piecewise functions