Work on Problem 4 of the previous worksheet.

We have learned how to find limits numerically and graphically. Both methods have their own risks. Today, we will find limits algebraically - the most reliable method.

Reminder: a function f is said to be continuous at a if $\lim_{x\to a} f(x) = f(a)$.

Most functions are continuous at every point *a* in its domain. These functions include:

- The power functions $f(x) = x^n$, for n = 1,2,3, ...
- The radical functions $f(x) = \sqrt[n]{x}$ for n = 2,3,4, ...
- The trigonometric functions
- ...

Algebraic rules of limit:

- Sum rule: $\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$ (if both exist)
- Product rule: $\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$ (if both exist)
- Quotient rule: $\lim_{x \to a} \frac{f(x)}{g(x)} = (\lim_{x \to a} f(x)) / (\lim_{x \to a} g(x))$ (if both exist)

Example:

Find $\lim_{x \to 1} \frac{x}{x^{2}+1}$

By quotient rule, $\lim_{x \to 1} \frac{x}{x^{2}+1} = \frac{\lim_{x \to 1} x}{\lim_{x \to 1} (x^{2}+1)} = \frac{1}{\lim_{x \to 1} (x^{2}+1)}$ By sum rule, $\lim_{x \to 1} (x^{2}+1) = \lim_{x \to 1} x^{2} + \lim_{x \to 1} 1 = 1^{2} + 1 = 2$ Therefore, $\lim_{x \to 1} \frac{x}{x^{2}+1} = \frac{1}{2}$