Lecture 16 Friday, October 11, 2024 12:05 AM

Theorem: If a function $f:[a, b] \rightarrow R$ is continuous then it is bounded. The assumption that f is continuous is crucial. You can find a discontinuous on [0,1] that is unbounded.

Proof: Suppose by contradiction that f is unbounded. Then there exists a sequence (x_n) in [0,1] such that $|f(x_n)| \to \infty$. Because (x_n) is bounded, by B-W theorem, there exists a convergent subsequence (x_{n_k}) . Let x_0 be the limit. Note that $a \le x_0 \le b$ because $a \le x_{n_k} \le b$ for all k. By the continuity of f, $\lim f(x_{n_k}) = f(x_0)$. Which is a contradiction because $f(x_{n_k})$ is unbounded.