In the proof of the fact that every continuous function on [a, b] is bounded which I gave you last time, where is the closed interval [a, b] needed (as opposed to (a, b) or (a, b] or [a, b))?

Theorem: every continuous function on [a, b] attains a maximum value and a minimum value on [a, b].

<u>Proof</u>: Let $M = \sup f$. There exists a sequence (x_n) in [0,1] such that $M - \frac{1}{n} < f(x_n) \le M$ for all n. Thus, the sequence $(f(x_n))$ converges to M. Then use a subsequence argument (B-W theorem).

Theorem: Let f be a continuous function on [a, b] and $\min f < y < \max f$. There exists $x \in [a, b]$ such that f(x) = y.

<u>*Proof*</u>: The minimum value of f is attained at x_1 and the maximum value of f is attained at x_2 . Suppose $x_1 < x_2$. Let

 $x = \inf S$ where $S = \{z \in (x_1, x_2): f(z) > y\}$

Note that the set *S* is nonempty because it contains x_0 . Thus, *x* is finite and $x \in [x_1, x_2]$. We claim that $f(x) \ge y$. Use sequence argument: let (z_n) be a sequence in *S* such that $(z_n) \rightarrow x$. Then $f(z_n) \rightarrow f(x)$ thanks to the continuity of *f*. Because $f(z_n) \ge y$ for all *n*, we must have $f(x) \ge y$.

If $x = x_1$ then $f(x_1) \ge y$, which means min $f \ge y$, which is a contradiction. Therefore, $x > x_1$. For sufficiently large n, we have $x_1 < x - \frac{1}{n} < x$. Thus, $x - \frac{1}{n}$ belongs to (x_1, x_2) but does not belong to S. Thus, $f\left(x - \frac{1}{n}\right) \le y$. Then

$$f(x) = \lim_{n \to \infty} f\left(x - \frac{1}{n}\right) \le y$$

Therefore, f(x) = y. In the case $x_1 > x_2$, let

 $x = \sup S$ where $S = \{z \in (x_1, x_2): f(z) > y\}$

And the remaining argument follows the same lines as above.