In the proof of the fact that every continuous function on $[a, b]$ is bounded which I gave you last time, where is the closed interval $[a, b]$ needed (as opposed to (a, b) or $(a, b]$ or (a, b) ?

Theorem: every continuous function on $[a, b]$ attains a maximum value and a minimum value on $[a, b]$.

Proof: Let $M = \sup f$. There exists a sequence (x_n) in $[0,1]$ such that $M - \frac{1}{n} < f(x_n) \leq$ *M* for all *n*. Thus, the sequence $(f(x_n))$ converges to *M*. Then use a subsequence argument (B-W theorem).

Theorem: Let f be a continuous function on [a, b] and min $f < y <$ max f. There exists $x \in [a, b]$ such that $f(x) = y$. *Proof*: The minimum value of f is attained at x_1 and the maximum value of f is

attained at x_2 . Suppose $x_1 < x_2$. Let

$$
x = \inf S
$$
 where $S = \{z \in (x_1, x_2): f(z) > y\}$

Note that the set S is nonempty because it contains x_0 . Thus, x is finite and $x \in$ $[x_1, x_2]$. We claim that $f(x) \geq y$. Use sequence argument: let (z_n) be a sequence in S such that $(z_n) \to x$. Then $f(z_n) \to f(x)$ thanks to the continuity of f. Because $f(z_n) \geq y$ for all *n*, we must have $f(x) \geq y$.

If $x = x_1$ then $f(x_1) \geq y$, which means min $f \geq y$, which is a contradiction. Therefore, $x > x_1$. For sufficiently large *n*, we have $x_1 < x - \frac{1}{n} < x$. Thus, $x - \frac{1}{n}$ $\frac{1}{n}$ belongs to (x_1, x_2) but does not belong to S. Thus, $f\left(x-\frac{1}{n}\right)$ $\frac{1}{n}$ \leq y. Then

$$
f(x) = \lim_{n \to \infty} f\left(x - \frac{1}{n}\right) \le y
$$

Therefore, $f(x) = y$. In the case $x_1 > x_2$, let

 $x = \sup S$ where $S = \{z \in (x_1, x_2): f(z) > y\}$

And the remaining argument follows the same lines as above.