Math 107: Quantitative Reasoning

Tuan N. Pham * Fall 2025

September 5, 2025

Contents

Lecture 1: introduction; percentage, convert percentage to decimal numbers and fractions	3
	3
Lecture 2: usage of percentage	3
Lecture 3: scientific notation	4
Lecture 4: significant digits	4
Lecture 5: error of measurement-source and representation	4
Lecture 6: cash flow, interest rate	4
Lecture 7: compound interest, accumulated balance	4
Lecture 8: continuous compounding	4
Lecture 9: two methods of saving—lump sum and annuity	4
Practice on annuity	4
Lecture 10: present/future value of a payment stream; loans	4
Practice on amortization	4
Review for Midterm I	4
Lecture 11: logics, some common types of fallacy	4
Lecture 12: propositions, connectors, truth table	4
Lecture 13: set notation and Venn diagram	4
Lecture 14: inductive and deductive arguments	4

^{*}Faculty of Math and Computing, Brigham Young University-Hawaii

Lecture 15: statistical study	4
Lecture 16: evaluating a statistical study	4
Lecture 17: data representation as tables and graphs	4
Lecture 18: correlation and causality	4
Lecture 19: mean, median, mode, histogram	4
Lecture 20: measure of variations, boxplot	4
Review for Midterm II	4
Lecture 21: practice on the last worksheet	4
Lecture 22: normal distribution, 68-95-97.5 rule	4
Lecture 23: z-score, percentile; practice on the last worksheet	4
Lecture 24: further practice on normal distribution	4
Lecture 25: Central Limit Theorem and sampling distribution	4
Lecture 26: interval of confidence, margin of error, hypothesis testing	4
Lecture 28: independent events, find probability of AND/OR events	4
Lecture 29: practice on the worksheet last time	4
Lecture 30: Law of Large Numbers and expected values	4
Lecture 31: counting permutations and combinations	4
Lecture 32: practice on the worksheet last time	4
Review for Final Exam	4

Lecture 1 (Sep 3)

We will cover the following chapters of the book in order below:

• Chapter 3: representing numbers

• Chapter 4: Math in Finance

• Chapter 1: logic

• Chapter 5 and 6: statistics

• Chapter 7: probability

There are 3 common ways to represent a number: decimal, percentage, fraction. For some cases, rounding is necessary. Percentage and fraction are often used to describe the ratio of a set of things to another set.

Example 1: 6 out of 10 students in an elementary school are male. The ratio of male and female is 6:4. The percentage of male students in the school is $\frac{6}{10} = \frac{6}{10} \times 100\% = 60\%$.

Example 2: In the academic year 2018-2019, the tuition per student of BYUH was \$2780 per semester. In the academic year 2023-2024, the tuition per student is \$3219 per semester. Over the 5 years from 2018 to 2023, the tuition has increased by $\frac{3219-2780}{2780} = \frac{439}{2780} \times 100\% \approx 15.8\%$.

Lecture 2 (Sep 5)

Goals:

- Conversion of decimal (with rounding as needed), fraction, percentage
- Use of percentage
- Absolute change and relative change

You can convert the three forms of representing a number.

Example 1:

$$1.7 = 1.7 \times 100\% = 170\% = \frac{170}{100} = \frac{17}{10}$$

Example 2:

$$\frac{6}{13} = 0.4615384615... \approx 0.462 \quad \text{(rounded to three decimal places)}$$

$$\frac{6}{13} \approx 46.15\% \quad \text{(rounded to two decimal places)}$$

Example 3: There are decimal numbers that never "ends" when you write the digits, but has a repeated pattern. For example, 1.426262626... In other to convert this number into decimal form, let us give it a name, say x = 1.426262626... Now notice that 10x = 14.262626... and 1000x = 1426.262626... Then

$$1000x - 10x = 1426 - 14 = 1412.$$

In other words, 990x = 1412. Therefore, $x = \frac{1412}{990} = \frac{706}{495}$.

You can use percentage to compare quantities and to describe the change.

Example 4: The highest SAT score is 1600. Earlier this year, you got 1150. So, you got

$$\frac{1150}{1600}\approx 71.88\%$$

of the total score. Last year, you got 1050. So, you got

$$\frac{1050}{1600} \approx 65.63\%$$

Compared to last year, your score has improved by 100 points (absolute change). You gained 71.88 - 65.63 = 6.25 percentage points (absolute change). Your score last year was

$$\frac{1050}{1150} \approx 91.30\%$$

of your score this year. Your score this year is

$$\frac{1150}{1050} \approx 109.52\%$$

of your score this year. Your score has increased by

$$\frac{1150-1050}{1050}\approx 9.52\% \quad (\text{relative change})$$

Your score last year was

$$\frac{1150-1050}{1150}\approx 8.70\% \quad (\text{relative change})$$

lower than your score this year.