Lecture 1

Thursday, March 30, 2023 4:19 PM

* Introduction This course is a preparating course for Calculus. The main topics to be covered are: · Enponential functions · Logarithm functions . Trigonometric functions · Inverse togonometric functions . Complex numbers Enponential functions : 2 = 2×2 $2^4 = 2 \times 2 \times 2 \times 2$ $2^{-4} = \frac{1}{2^4}$ $2^{\frac{1}{2}}2^{\frac{1}{2}}=2^{\frac{1}{2}+\frac{1}{2}}=2^{\frac{1}{2}}=2$ $2^{\frac{1}{2}} = \sqrt{2}$, Why? $\sqrt{2} \sqrt{2} = 2$

How about
$$2^{\frac{1}{3}}$$
?
 $2^{\frac{1}{3}}2^{\frac{1}{3}}2^{\frac{1}{3}}=2^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}=2^{\frac{1}{2}}=2$
Thus, $2^{\frac{1}{3}}=12$.
How about $2^{\frac{3}{3}}$?
 $2^{\frac{1}{3}}2^{\frac{3}{2}}2^{\frac{1}{3}}=2^{\frac{3}{2}+\frac{7}{3}+\frac{7}{3}}=2^{\frac{1}{2}}$
Thus, $2^{\frac{3}{3}}=12^{\frac{1}{2}}$
In general, $a^{\frac{1}{11}}=\sqrt{a^{\frac{1}{11}}}$.
How about $2^{\frac{1}{12}}$?
 $12 \approx 1.4142...$
 $2^{\frac{1}{2}} \approx 2^{\frac{1}{1}}=2^{\frac{\frac{7}{3}}{2}}=52^{\frac{7}{2}}$
 $2^{\frac{1}{2}} \approx 2^{\frac{1}{1}}=2^{\frac{\frac{1}{3}}{2}}=52^{\frac{7}{2}}$
 $12^{\frac{1}{2}} \approx 2^{\frac{1}{1}}=2^{\frac{1}{12}}=52^{\frac{1}{12}}$
 $12^{\frac{1}{2}} \approx 2^{\frac{1}{14}}=2^{\frac{141}{12}}=2^{\frac{141}{12}}$
 $12^{\frac{1}{2}} \approx 2^{\frac{1}{14}}=2^{\frac{141}{12}}=...$
In general, we can define $2^{\frac{1}{2}}$ for any real number x .
 $2^{\frac{1}{2}}$ is an exponential punctur. 2 is the base and n is the exponent.