
Lab 2

In this lab, we will practice with Mathematica the following topics:

• Approximate the value of a series within an allowable error.

• Find the radius of convergence and interval of convergence of a power series.

• Approximate a function by polynomials.

1 Getting access

There are two ways to get free access to Mathematica:

A) Install three free components: Wolfram Engine, JupyterLab, and WolframLanguageForJupyter.
You can use the unlimited computing power of Mathematica on your own computer, with
JupyterLab acting as a user interface. The instruction is here:

https://web.engr.oregonstate.edu/∼phamt3/Resource/Wolfram-Mathematica-with-JupyterLab.pdf

B) Use the cloud-based version of Mathematica: https://www.wolframcloud.com
In this option, you are limited to about 8 minutes of computation per month. Files stored on
the cloud will be deleted after 60 days.

2 Approximate the value of a series

A series
∑
an is an infinite sum. Unless it is of special type such as a geometric series or telescoping

series, the task of finding the exact value of the series is generally challenging. A calculator can
only add finitely many terms, not infinitely many terms. Nevertheless, if given any allowable error,
one can approximate the series within that error. This is a satisfactory solution for most practical
purposes. As a starting example, let us consider an alternating series

∑
(−1)nbn. If the sequence

{bn} is decreasing and convergent to 0 then by the Alternating Series Estimation Theorem (page
463 of the textbook), ∣∣∣∣∣

∞∑
n=1

(−1)nbn −
m∑
n=1

(−1)nbn

∣∣∣∣∣ ≤ bm+1.

In other words, the sum of the first m terms (i.e. the m’th partial sum) differs from the exact
value of the series by an error less than bm+1. Therefore, to find an approximate value of the series∑

(−1)nbn with an allowable error ε, we will find a number m (smallest is preferred) such that
bm+1 < ε. Then the m’th partial sum sm =

∑m
n=1(−1)nbn is an approximate value we need.

For example, we want approximate the value of S =
∑∞

n=1
(−1)n+1

2n+n with an allowable error

ε = 10−6. In this case, bn = 1
2n+n , which is a decreasing sequence convergent to 0.

(1) Hence, we need to find the smallest number m such that bm+1 < 10−6. You can try plug-
ging m = 1, 2, 3, 4, ... into bm+1 to see which of them is the first one to make bm+1 < 10−6.
Alternatively, you can use the While loop of Mathematica. The syntax of the While loop is

While[test, body]

Mathematica will check the test first. If true, it executes the body. Then it checks the test again.
If true, it will execute the body again. And then go back to check the test. The loop continues
until the test is false. Note that if the body contains multiple commands, these commands have
to be separated from each other by the semicolons. Try the following:
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b[n_] := 1/(2^n + n);

m = 1;

esp = 10^(-6);

While[b[m+1] > esp, m = m+1]

(2) After executing the above, type m and press Shift+Enter to see what the value of m is. This
is the smallest value of m such that bm+1 < ε. The approximate value of the series is sm =∑m

n=1(−1)nbn, which is computed by the command

S = Sum[(-1)^(n+1)*b[n], {n,1,m}]

(3) To see what the fraction is in decimal form, try

N[S]

N[S, 8]

N[S, 10]

Only 6 digits (after the decimal point) of S are in the exact value of the series because we only
computed the series with an error of 10−6. Any digit after the 6th decimal place is not reliable.

(4) If you want to approximate the above series up to 9 decimal places, how many terms of the
series do you need to use? What is the approximation of the series?

The following representation of the number π

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− ... =

∞∑
n=0

(−1)n

2n+ 1

is famously known as the Leibniz’s formula. If you are interested in learning more about the history
of this formula (quite fascinating), take a look at this article:

https://www-jstor-org.eou.idm.oclc.org/stable/2690896

(5) To use Leibniz’s formula to estimate π correctly up to 5 decimal places, how many terms of
the series should you take? And what is the estimate value of π accordingly?

(6) There is another representation of π

π

2
√

3
=

∞∑
n=0

(−1)n

3n(2n+ 1)

This formula was found by Abraham Sharp in about 1717. If you are to use this formula to
approximate π correctly up to 5 decimal places, how many terms in the sum should you use?

(7) Since both Sharp’s formula and Leibniz’s formula can be used to approximate π, what are some
advantages and disadvantages of one method compared to the other?
Remark: there are many other series representations of π. You can find a long, yet incomplete,
list of them here: https: // mathworld. wolfram. com/ PiFormulas. html
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3 Find radius and interval of convergence

Recall that a power series centered at x0 is a series of the form
∑
an(x − x0)n. On its interval

of convergence, a power series defines a function. Not counting the endpoints, the interval of
convergence is always a symmetric interval about the center of the power series. Consider the
power series

∞∑
n=0

(−3)nxn√
n+ 1

To find the radius of convergence, one can use either the Ratio test or the Root test. Let

an =
(−3)nxn√
n+ 1

The Ratio test says that if the limit

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

exists and L < 1 then the series converges. If L > 1 then the series diverges. If L = 1 then the test
fails.

(8) We compute the limit L as follows.

a[n_] := (-3)^n*x^n/Sqrt[n + 1]

Clear[n]

L = Limit[Abs[a[n + 1]/a[n]], n -> Infinity]

Here, Abs is the absolute value function.

(9) The values of x that makes L < 1 belongs to the interval of convergence. We solve the inequality
L < 1 as follows.

Reduce[L < 1, x, Reals]

The option Reals in the above command is to indicate that we are interested in x as a real
number (instead of a complex number).

(10) You will see that the inequality L < 1 gives x ∈
(
−1

3 ,
1
3

)
. The radius of convergence is a half of

the length of this interval, which is R = 1
3 . The endpoints −1/3 and 1/3 have to be considered

manually and separately. Mathematica can provide some insights as follows. Let f(x) denote
the value of the power series.

f[x_] := Sum[(-3)^n*x^n/Sqrt[n + 1], {n, 0, Infinity}]

We can attempt to evaluate f at x = 1/3 and x = −1/3.

f[1/3]

f[-1/3]

Mathematica will show a warning on the second command, indicating that f is not defined at
x = −1/3. Therefore, the interval of convergence is (−1/3, 1/3].

Next, consider the power series
∞∑
n=0

n(x+ 2)n

3n+1
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(11) What is the center of this power series? Find the radius of convergence.

(12) Find the interval of convergence.

(13) Approximate the value of the power series at x = 0.

4 Approximate a function by polynomials

In many applications, it is helpful to approximate a function with polynomials. Polynomials are
easier to take derivative or integral, and more computer-friendly because they involve only the
addition, subtraction, and multiplication. To approximate a function by a polynomial, we simply
truncate the Taylor series of the function. Recall that the Taylor series of a function f at x0 is
given by

∞∑
n=0

an(x− x0)n, where an =
f (n)(x0)

n!

Truncating this series at a power m, we get an m’th degree Taylor polynomial

Tm(x) =
m∑
n=0

an(x− x0)n

and f is approximated by f(x) ≈ Tm(x). The approximation is good when x is close to x0, which
is the center of the power series, and gets worse as x is far away from the center. To maintain a
good approximation when x is far away from x0, you will have to increase the degree m. The larger
m is, the farther away x can be from x0 and the approximation is still good.

To obtain the Taylor polynomials Tm centered at x0 = 0 of a function f , we use the command
Series with the syntax

Series[f, {x,x0, m}]

(14) For example, consider the function f(x) = sinx+ cos(x/
√

2). Try the command

f[x_] := Sin[x] + Cos[x/Sqrt[2]]

Series[f[x], {x, 0, 7}]

The output will look something like

1 + x− x2

4
− x3

6
+
x4

96
+

x5

120
− x6

5760
− x7

5040
+O

(
x8
)

Therefore, the first seven Taylor polynomials T1, T2, ..., T7 are

T1(x) = 1 + x

T2(x) = 1 + x− x2

4

T3(x) = 1 + x− x2

4
− x3

6
...

T7(x) = 1 + x− x2

4
− x3

6
+
x4

96
+

x5

120
− x6

5760
− x7

5040

The term O(x8) denotes the error term, which is the difference between the function f and the
polynomial T7.
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(15) To see how well each Taylor polynomial approximates the function f , we graph them together
on the same plot. For example, try the following to graph f and T1 on the same plot.

T1[x_] := 1+x

Plot[{f[x], T1[x]}, {x,-3,3}]

(16) Use the fashion above to graph each of the functions T2, T3, ..., T7 (one by one, not all at once)
together with f on the same plot. What do you observe?

(17) One way to quantify how good the approximation f(x) ≈ Tm(x) is on the interval x ∈ [−3, 3]
is by looking at the maximum value of |f(x)− Tm(x)| on the interval [−3, 3]. Try

MaxValue[{Abs[f[x] - T1[x]], -3 <= x <= 3}, x]

NMaxValue[{Abs[f[x] - T1[x]], -3 <= x <= 3}, x]

(18) For m = 2, 3, ..., 7, find the maximum of |f(x)− Tm(x)| on the interval [−3, 3].

(19) How large does m have to be so that f(x) ≈ Tm(x) with an error less than 0.01 for any
x ∈ [−3, 3] ?

In Calculus II, you learned how to approximate a definite integral of a function using Riemann
sums. That was helpful when you don’t know the antiderivative of the function. Here, we learn
another method (simpler) to approximate a definite integral using Taylor polynomials. The idea is
very simple: ∫ b

a
f(x)dx ≈

∫ b

a
Tm(x)dx

The integral of Tm is always computable because Tm is a polynomial. To estimate the error of this
approximation, we note that∣∣∣∣∫ b

a
f(x)dx−

∫ b

a
Tm(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)− Tm(x)|dx ≤ (b− a) max

x∈[a,b]
|f(x)− Tm(x)|.

Therefore, to estimate
∫ b
a f(x)dx with an allowable error ε, we will

• first, find some Taylor polynomials T1, T2, T3, ... of the function f . To get the best approxi-
mation, the center x0 of these polynomials should be taken as a+b

2 , the midpoint of [a, b].

• second, choose m such that

max
x∈[a,b]

|f(x)− Tm(x)|dx < ε

b− a

• finally, compute
∫ b
a Tm(x)dx. That is an approximate value of

∫ b
a f(x)dx that we need.

(20) For example, let us evaluate
∫ 2
0 sin(−x+ cos(x− 1))dx with a permissible error ε = 0.001. Use

the following command to see if Mathematica is able to find the exact value of this integral:

Integrate[Sin[-x + Cos[x - 1]], {x, 0, 2}]

(21) Because the midpoint of the interval [0, 2] is 1, we will approximate the function f(x) =
sin(−x + cos(x − 1)) by Taylor polynomials centered at 1. Can you write a command to get
the 12th degree polynomial of this function? Define it as a function T (x) using T[x_]:=...

(copy/paste the output from the previous command)
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(22) Now use the command NMaxValue to find the maximum of |f(x)− T (x)| on the interval [0, 2].

NMaxValue[{Abs[f[x] - T[x]], 0 <= x <= 2}, x]

Is it less than ε
b−a = 0.001

2−0 = 0.0005 ? If yes, we can proceed to the next step. If no, try to
define T as the 13th, 14th,... degree Taylor polynomials until the maximum is under 0.0005.

(23) Finally, we compute the integral of T (x) .

Integral[T[x], {x, 0, 2}]

That is the approximate value of the original integral that we were looking for.

(24) Use the procedure outlined above to find an approximate value of the integral∫ 1

−3
cos(e2x+2 − 1)dx

with permissible error 0.001.

5 To turn in

Submit your implementation of Exercises (1) - (24) as a single pdf file.
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