Midterm: Some problems for review

The exam will be held at the Testing Center (Zabel Hall 112) from Monday $5 / 8$ to Wednesday $5 / 10$. The material covered is Section $8.1-8.6$. It is a closed book exam. A 4" x 6 " handwritten single-sided note card is allowed. A scientific calculator is allowed (and you will need it!) Graphing/ programmable/ transmittable calculators are not allowed.

You should review the homework problems, the examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Find the exact value of a convergent geometric series.
- Determine if a series converges or diverges using the convergent tests: Comparison test, Integral test, Alternative series test, Ratio test, Root test.
- Find the center, radius of convergence, and interval of convergence of a power series.
- Represent some functions as a power series.
- Apply power series to approximate a definite integral.

Additional problems to practice:

1) Find the exact value of the geometric series $-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\ldots$
2) Determine if each of the following series converges or diverges.
(a) $\sum \frac{1}{2 n-1}$
(b) $\sum \frac{n}{\ln (n+2)}$
(c) $\sum \frac{n}{3 n^{3}-2}$
(d) $\sum \frac{(-1)^{n}}{n!}$
(e) $\sum(-1)^{n}\left(\frac{n+1}{2 n+1}\right)^{n}$
3) Find the center, radius of convergence, and interval of convergence of the following power series.
(a) $\sum \frac{x^{n}}{n^{2}+n}$
(b) $\sum \frac{(2 x-1)^{n}}{n\left(3^{n}\right)}$
4) Represent the following functions as a power series centered at 0 .
(a) $\frac{3}{5+2 x^{2}}$
(b) $\frac{x}{x^{2}+x-2}$
5) Express the integral

$$
\int_{0}^{1} \frac{1}{x^{4}+2} d x
$$

as a power series. Then approximate it by the 4th partial sum of the series.

