Recall that the polar equation of an ellipse is

$$
r=\frac{e d}{1 \pm e \cos \theta}
$$

Here, the pole is at one of the rocs of the ellipse and d is the distance from the pole to the directrix.

Ex Find a polar equation of the following ellipse.

$$
\begin{aligned}
& a=4, b=3 \\
& \leadsto c=\sqrt{a^{2}-b^{2}}=\sqrt{7} \leadsto e=\frac{c}{a}=\frac{\sqrt{7}}{4}
\end{aligned}
$$

The distance from the origin to the
directrix is $\bar{d}=\frac{a^{2}}{c}=\frac{16}{\sqrt{7}}$
Thus, the distance from the pole $(-\sqrt{7}, 0)$ to the directrix is

$$
d=\bar{d}-c=\frac{16}{\sqrt{7}}-\sqrt{7}=\frac{9}{\sqrt{7}}
$$

Therefore, the polar equation of the ellipse is

$$
r=\frac{e d}{1 \pm e \cos \theta}=\frac{\frac{\sqrt{7}}{4} \frac{9}{\sqrt{7}}}{1 \pm \frac{\sqrt{7}}{4} \cos \theta}=\frac{\frac{9}{4}}{1 \pm \frac{\sqrt{7}}{4} \cos \theta}=\frac{9}{4 \pm \sqrt{7} \cos \theta}
$$

To know which sign to take, we check $\theta=0$.
when $t=0$, the point on the ellipse is at $(4,0)$. The distance from it to the pole is $r=4+\sqrt{7}$.

Also,

$$
r=\frac{9}{4 \pm \sqrt{7} \cos \theta}=\frac{9}{4 \pm \sqrt{7}}
$$

For this to be equal to $4+\sqrt{7}$, we proc the minus sign. Therefore,

$$
r=\frac{9}{4-\sqrt{7} \cos \theta}
$$

* Note: The focus and the directrix go together. There are two fol and two directives. They go in pair as in the below preture.

