Final exam: Some problems for review

The exam will be held at the regular classroom Loso 116 from Tuesday June 13 from 8 AM to 10 AM. The material covered is Section 12 (complex root only), 14, 18, 20, 21, 27 (using substitution is acceptable) of the textbook. It is a closed book exam. A 4" x 6 " handwritten single-sided note card is allowed. A scientific calculator is allowed (and you will need it!) Graphing/ programmable/ transmittable calculators are not allowed.

You should review the homework problems, the examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Use the "characteristic equation" method to solve a homogeneous second order ODE.
- Use the method of undetermined constants to solve an inhomogeneous second order ODE.
- Use variation of constants to solve an inhomogeneous second order ODE.
- Use the power series technique to solve an ODE.
- Use Euler's method to solve approximately the solution of a first order ODE.
- Solve a simple 2-by-2 linear system of ODEs.

Additional problems to practice:

1) Find the general solution to the equation $x^{\prime \prime}+4 x^{\prime}+5=0$.
2) Find the general solution to the equation $x^{\prime \prime}+x^{\prime}-2 x=2 e^{-2 t}+t$.
3) Find the general solution to the equation $x^{\prime \prime}-3 x^{\prime}+2 x=\sin \left(e^{-t}\right)$.
4) Consider to equation $y^{\prime \prime}-x y^{\prime}+y=e^{2 x}$ with initial conditions $y(0)=1, y^{\prime}(0)=2$.
(a) If we approximate $y \approx a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$. What would $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ be?
(b) Express y as a power series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find a recursive formula for a_{n} 's.
5) Consider the equation

$$
y^{\prime}=\frac{1}{1+x y}
$$

with the initial condition $y(0)=1$. Use Euler's method to find approximately $y(0.1), y(0.2)$, $y(0.3), y(0.4)$.
6) Solve the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+2 x_{2} \\
x_{2}^{\prime} & =3 x_{1}+2 x_{2}
\end{aligned}
$$

with the initial conditions $x_{1}(0)=-2$ and $x_{2}(0)=3$.

