Midterm: Some problems for review

The exam will be held at the Testing Center (Zabel Hall 112) from Monday $5 / 8$ to Wednesday $5 / 10$. The material covered is Section 1, 3, 6, 7, 8, 9, 11, 12 (not including complex roots) of the textbook. It is a closed book exam. A 4" x 6 " handwritten single-sided note card is allowed. A scientific calculator is allowed (and you will need it!) Graphing/ programmable/ transmittable calculators are not allowed.

You should review the homework problems, the examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Classify a differential equation: order, ODE vs PDE, linear vs nonlinear, autonomous vs non-autonomous.
- For first order autonomous ODE, draw a phase diagram and behavior of solutions with different initial conditions.
- Solve an ODE using the separation of variables method or integrating factor method.
- Use the characteristic equation to solve a second order linear ODE with constant coefficients.
- Use the theorem of existence and uniqueness of solutions.
- Solve problems of population growth, Newton's law of cooling, carbon dating.

Additional problems to practice:

1) The initial value problem $y^{\prime}=x \sqrt{y}, y(0)=0$ has two solutions $y_{1}=0$ and $y_{2}=\frac{x^{4}}{16}$. Explain why how the criterion for existence and uniqueness fails.
2) Consider the autonomous $\operatorname{ODE} x^{\prime}=x^{3}-x$. Determine all equilibrium states. Draw the phase diagram and the diagram behavior of solutions with different initial conditions. Classify the equilibrium states into stable, unstable, semistable. If $x(1)=1 / 2$, what is $\lim _{t \rightarrow \infty} x(t)$?
3) Find the general solution of $y^{\prime}=3 x^{2} e^{-y}$ and the particular solution that satisfies the condition $y(0)=1$.
4) Find the general solution of $y^{\prime}+\frac{3 y}{x+1}=(x+1)^{4}$.
5) While examining an wooden artifact, scientists found that the ratio of ${ }^{14} C$ to ${ }^{12} C$ is only 95% of the usual ratio in a living plant. According to the carbon dating method given by the ODE $N^{\prime}=-k N$, approximately how long ago was the artifact made?
