. Law of sines: 
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{C}$$

can be used for the cases ASA, SAA (one side, two angles).

or SSA (ambiguous case: mag out 0,1,2 mausles)



no sielation



one solution





## . Law of Cosines:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
,  $\cos B = \frac{c^2 + a^2 - b^2}{24c}$ ,  $\cos C = \frac{a^2 + b^2 - c^2}{24b}$ 

can be used for the cases SAS (two sides and the angle in between) SSS (three sides)

It is impossible to solve a triangle knowing only 3 angles (no sides).

$$E_{\rm R} = a = 1, 6 = 3, \alpha = 30^{\circ}$$

$$\frac{\sin \beta}{b} = \frac{\sin \alpha}{a} = \frac{\sin 30^{\circ}}{1} = \frac{1}{2}$$

$$Sin \beta = \frac{6}{2} = \frac{3}{2} > 1$$
 (impossible)

En 
$$a = \frac{3}{2}$$
,  $b = 3$ ,  $x = 30^{\circ}$ 

$$\frac{8 \cdot 4 \cdot f}{h} = \frac{\sin \alpha}{\alpha} = \frac{1/2}{3/2} = \frac{1}{3}$$

$$f_{x}$$
  $a = 2$ ,  $b = 3$ ,  $x = 36^{\circ}$ 
 $f_{x} = \frac{\sin \alpha}{x} b = \frac{1/2}{2} 3 = \frac{3}{4}$ 
 $f_{x} = 48.59^{\circ}$  or  $f_{y} = 180^{\circ} - 48.59^{\circ} = 131.41^{\circ}$ 

For each case, we compute Y and C.

so, there will be two triangles.

$$E_{x} = 4, b=3, \alpha=30^{\circ}$$
  
 $sin \beta = \frac{sind}{a}b = \frac{1/2}{4}3 = \frac{3}{8}$ 

There are two choices for 
$$\beta$$
:  $\beta = \operatorname{arcsin}(\frac{3}{p})$ , or  $\beta = 180^\circ - \operatorname{arcsin}(\frac{3}{p})$ .

 $\approx 22.02^\circ$ 
 $\approx 157.98^\circ$ 

For 
$$\beta \approx 22.00^{\circ}$$
,  $Y = 100 - x - \beta = 140^{\circ} - 30^{\circ} - 22.02^{\circ} = 127.98^{\circ}$   
 $\sim C = \frac{\sin Y}{\sin x} \alpha = ...$ 

For px 157.90, Y=100-x-p=180-30-157.98 <0: impossible

+ Some examples of the law of cosines

\* The theodolite instrument for surveying.

\* Trigonometric identities:

Prove that 
$$(sinx + cos x)^2 = 1 + 2 sinx cos x$$

$$\frac{1 - sinx}{1 + sinx} = (sec x - tanx)^2$$