Addition of angles:

$$
\begin{aligned}
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}
\end{aligned}
$$

Moral: if we know \sin, cos of x and y, well know everything about $x+y$.
Ex find $\sin 75^{\circ}, \cos 105^{\circ}$

$$
\begin{aligned}
& \sin \left(75^{\circ}\right)=\sin \left(30^{\circ}+43^{\circ}\right)=\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ}=\frac{1}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4} . \\
& \cos \left(105^{\circ}\right)=\cos \left(45^{\circ}+60^{\circ}\right)=\ldots
\end{aligned}
$$

En

$$
\gamma=?
$$

Mote that $\gamma=\alpha+\beta$.

$$
\begin{aligned}
& \tan \gamma=\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& =\frac{\frac{4}{6}+\frac{3}{4}}{1-\frac{4}{6} \frac{3}{4}}=\frac{17}{6}
\end{aligned}
$$

Thus, $\gamma=\tan ^{-1}\left(\frac{17}{6}\right) \approx \ldots$.
E_{n}

Show that $\beta+\gamma=\alpha$

Notice that $\alpha=45^{\circ}, \tan \beta=\frac{1}{2}, \tan \gamma=\frac{1}{3}$.

$$
\tan (\beta+\gamma)=\frac{\tan \beta+\tan \gamma}{1-\tan \beta \tan \gamma}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \frac{1}{3}}=1
$$

Thus, $\beta+\gamma=\tan ^{-1}(1)=45^{\circ}=\alpha$.
En Shoo that $\sin (2 x)=2 \sin x \cos x$

$$
\cos (2 x)=2 \cos ^{2} x-1
$$

Hint: $2 x=x+x$
Add two waves with the same frequency:

same frequency, different amplitude and phase shot t

$$
A \sin (\omega x)+B \cos (\omega x)=\sqrt{A^{2}+B^{2}}\left(\frac{A}{\sqrt{A^{2}+B^{2}}} \sin (\cos)+\frac{B}{\sqrt{A^{2}+B^{2}}} \cos (\omega x)\right)
$$

Find ϕ such the $\quad \cos \phi=\frac{A}{\sqrt{A^{2}+B^{2}}}, \quad \sin \phi=\frac{B}{\sqrt{A^{2}+B^{2}}}$
Then

$$
\begin{aligned}
& A \sin (\omega x)+B \cos (\omega x)=\sqrt{A^{2}+B^{2}}(\cos \phi \sin (\omega x)+\sin \phi \cos (\omega x)) \\
&=\underbrace{\sqrt{A^{2}+B^{2}}}_{\begin{array}{c}
\text { new } \\
\text { amplitude }
\end{array}} \sin (\omega x+\phi) \\
& C_{\text {new }}^{\substack{\text { phasershept }}}
\end{aligned}
$$

