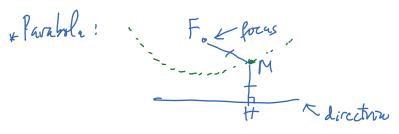

Lecture 20

Friday, June 21, 2024 12:49 AM

Three constructions ellipse (circle being a special case) parabola hyperbola

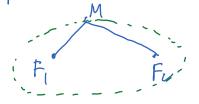
These conre sections are very rich in geometric properties.

Imagine an infinite double come :

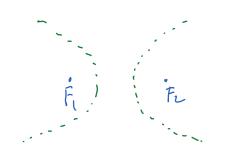


Imagine that you cat it by an inpirito plane: g the cross section is a finite urve, that is an ellipse. If the plane is purallel to a generator, that is a parabola. Otherwise, it is a hyperbola. nerator of the core)

* Another way to interpret conic sections:


paraboli	ellipse	hyperbola
focus, directron	focus, focus	focus, focus focus, diretur
	focus, directore	focus, diretan
will learn in Calc II (Meth 213)		

We will view cona sections as geometris objects, not as graph of functions.



powerbole is the collection of points M such that MF= MH.


* Ellipse:

+ Hyperbola:

$$MF_2 - MF_1 = 2a$$
$$MF_1 - MF_2 = 2a$$

We choose a coordinate system that makes the equation of the parabola as simple as possible. \underline{E}_{n} : Find the equation of a parabola with focus F(0, 1) and verter (0, 0). \underline{E}_{n} verter (0, 0), directrix $y = \frac{1}{2}$.