Math 214 - Multivariable Calculus - Spring 2024

Class Information

Instructor: Tuan Pham
Class meetings: M, T, W, Th, F: 9:30 - 10:50 AM at SCB 303
[Syllabus]   [Class schedule]   [Canvas]   [WebAssign]  

Office Hours

Monday, Wednesday, Friday: 12:30 - 2 PM at SCB 311, or by appointment

Assignments

  • Homework problems are to be done in WebAssign.
  • Labs are submitted on Canvas as pdf file and source file (nb or ipynb).
  • Get access to Mathematica
  • Quizzes are given in class. See the class schedule above.
    Quizzes Labs
    Quiz 1 Lab 1
    Quiz 2 Lab 2
    Quiz 3 Lab 3
    Quiz 4 Lab 4
    Quiz 5 Lab 5
    Quiz 6
  • Lecture notes

  • Lecture 38 (Jun 26): surface integral of scalar functions; Review for Final exam
  • Lecture 37 (Jun 25): geometric meaning of curl and divergence; parametric surfaces
  • Lecture 36 (Jun 24): Green's theorem; curl and divergence
  • Lecture 35 (Jun 21): conservative vector fields; Fundamental Theorem of Calculus
  • Lecture 34 (Jun 20): computation of line integral of vector fields
  • Lecture 33 (Jun 18): concept of line integral of vector fields
  • Lecture 32 (Jun 17): plot vector fields; line intergal of scalar functions
  • Lecture 31 (Jun 14): change of variables; vector fields
  • Lecture 30 (Jun 13): change of variables
  • Lecture 29 (Jun 12): triple integral using spherical coordinates
  • Lecture 28 (Jun 11): triple integral using cylindrical coordinatates
  • Lecture 27 (Jun 10): sketch solids from inequalities; change order of integration
  • Lecture 26 (Jun 7): more practice with triple integral
  • Lecture 25 (Jun 6): bell curve; triple integral
  • Lecture 24 (Jun 5): double integral using polar coordinates
  • Lecture 23 (Jun 4): change of order of integration; area and mass density
  • Lecture 22 (Jun 3): double integral on general domains
  • Lecture 21 (May 31): iterated integral and Fubini's theorem
  • Lecture 20 (May 30): integral of multivariable functions; Review for midterm exam
  • Lecture 19 (May 29): classification of critical points
  • Lecture 18 (May 28): multivariable optimization
  • Lecture 17 (May 24): directional derivatives, gradient, path of steepest ascend
  • Lecture 16 (May 23): chain rule
  • Lecture 15 (May 22): differential, chain rule
  • Lecture 14 (May 21): tangent planes, linear approximation
  • Lecture 13 (May 20): tangent planes
  • Lecture 12 (May 17): partial derivatives
  • Lecture 11 (May 16): limits and continuity
  • Lecture 10 (May 15): graphs, level sets, limits
  • Lecture 9 (May 14): motion problems, domains, level sets
  • Lecture 8 (May 13): length and curvature of curves
  • Lecture 7 (May 10): limit, continuity, derivative, integral of vector functions
  • Lecture 6 (May 9): cylinder surfaces, quadratic surfaces, vector functions
  • Lecture 5 (May 7): lines and planes
  • Lecture 4 (May 6): cross product and applications
  • Lecture 3 (May 3): dot product, cross product
  • Lecture 2 (May 2): sphere, algebra of vectors, dot product
  • Lecture 1 (May 1): introduction, 3D coordinate system
  • Supplement materials

  • Answer key to Final review using Mathematica
  • Be the Volume: A Classroom Activity to Visualize Volume Estimation
  • L'Hospital rule for multivarible functions
  • Mathematica instruction from the Wolfram company:
       - 15-minute video: Hands-on start to Mathematica
       - Fast introduction for math students
       - Mathematica as a programming tool: An elementary introduction
  • Use Mathematica on JupyterLab:
       - Installation guide
       - Video instruction, sample lab report: pdf, ipynb
  • Links

    Joseph F. Smith Library, Testing Center, Math Lab

    This page was last modified on Wednesday, Jun 26, 2024.