Final Exam: Some problems for review

You will take your Final exam at the regular classroom SCB 303 on Thursday, June 27, from 10 AM to $12: 50 \mathrm{PM}$. You will do it on paper (not on a computer). The material covered is Section 15.1-15.3, 15.6-15.9, and 16.1-16.7. There will be some questions for extra credit. They can help you earn up to 5% of the total course score.

It is a closed book exam. No notes are allowed. You are allowed to use a scientific calculator. Phones are not allowed. You should review the homework problems, quizzes, and examples given in the lectures. It is always a good idea to study for the exam with someone. Some additional problems to practice:

1) Evaluate the surface integral $\iint_{S}(x+y+z) d S$ where S is the surface parametrized by $x=u+v$, $y=u-v, z=1+2 u+v, 0 \leq u \leq 2,0 \leq v \leq 3$.
2) Evaluate the surface integral $\iint_{S} x z d S$ where S is the intersection of the plane $x+y=7$ and the solid cylinder $y^{2}+z^{2} \leq 9$.
3) Use Green's theorem to evaluate $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y$ where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$ and is negatively oriented.
4) Find the work done by the force field $F(x, y)=(2 x+y, x)$ in moving an object from $P(1,1)$ to $Q(4,3)$.
5) Evaluate the line integral $\int_{C} \sin y d x+(x \cos y-\sin y) d y$ where C is the part of the graph of the function $y=2+\cos x$ from $(\pi, 1)$ to $(0,3)$.
6) Use a suitable change of variables to evaluate the double integral $\iint_{D}(x+y) e^{x^{2}-y^{2}} d A$ where D is the region enclosed by the lines $x-y=0, x-y=2, x+y=0$, and $x+y=3$.
7) Evaluate the volume of the solid that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=16$, above the $x y$-plane, and below the plane $z=y+4$.
