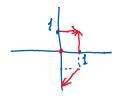
* Vector fields:

En
$$F(x,y) = (y,x)$$

(11.4)	F(x,y)
(0,0)	(v,v)
(1,0)	
(0,1)	(110)
(1,-1)	(-1,1)

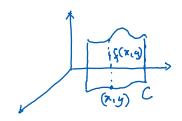


Use Mathematica to plot a vector field:

Line integal

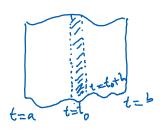
Calc I integral double/triple integral scalar function line integral rector field

 $\int_{b}^{b} area = \int_{a}^{b} f(n) dn$



area = Sf(x13)d.

Let r(t) = (n(t), y(t)) be a parametrization of C.



Alt) = wall area up from a to t.

A(to+h) - A(to) \approx area of rectangle with width

[r(to+h)-r(to)] and height $\varsigma(x(to), \varsigma(to))$.

= $[r(to+h)-r(to)]\varsigma(x(to), \varsigma(to))$.

Thus,
$$\frac{A(t_0+h)-A(t_0)}{h} \approx \left| \frac{\Gamma(t_0+h)-\Gamma(t_0)}{h} \right| \varsigma(x(t_0),y(t_0))$$

Let hos:

$$A'(t_0) = |r'(t_0)| f(n(t_0), y(t_0))$$

Drop the subscript:

$$A'(t) = (r'(t)) f(xt), g(t))$$

$$A(t) = A(a) + \int_{a}^{b} A'(t) dt = \int_{a}^{b} f(x(t), y(t)) |r'(t)| dt$$

Definition:

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t), y(t)) [r'(t)] dt$$