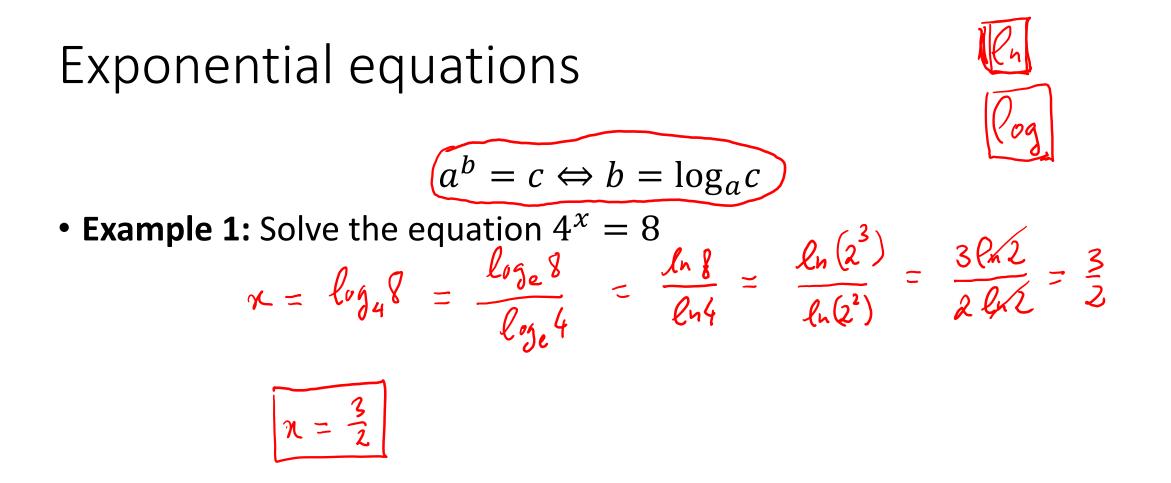
Exponential equations and inequalities



Exponential equations

• **Example 2:** Solve the equation $x^4 = 8$

power eq.

 $\gamma^{4} = 1 \longrightarrow \chi^{2} + \sqrt{8} = \pm 8^{1/4} \approx \pm 1.6818$

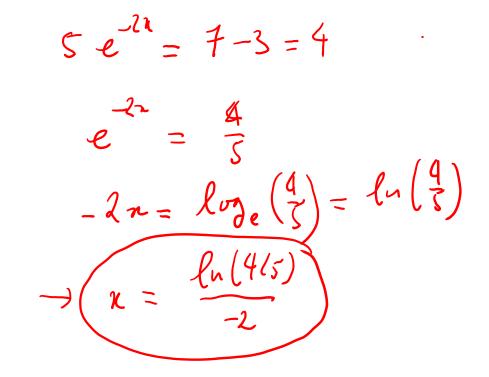
24 : power junction

4: enporential function

Exponential equations

$$a^{j}a^{b} = c \Leftrightarrow b = \log_{a}c$$

• Example 3: Solve the equation $3 + 5e^{-2x} = 7$



Exponential equations

l et

 $a^{b} = c \Leftrightarrow b = \log_{a} c$ • Example 4: Solve the equation $3^{x} + 2(3^{-x}) = 3$

$$3^{-x} = \frac{1}{3^{2}}$$

$$t = 3^{x}.$$

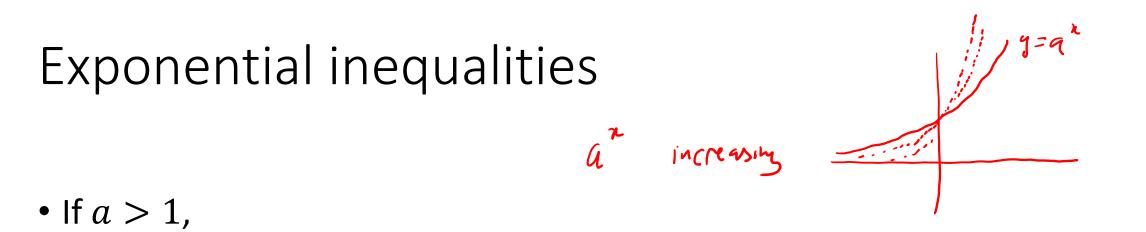
$$(t + 2 \frac{1}{t} = 3) \times t$$

$$f^{2} + 2 = 3t \longrightarrow t^{2} - 3t + 2 = 0$$

$$t = 1 \text{ or } t = 2$$

If
$$t=1$$
: $3^{n}=1 \rightarrow n = \log_{3} l = 0$
If $t=k$: $3^{n}=k \rightarrow n = \log_{3} k = \frac{\ln 2}{\ln 3} \approx 0.6309$

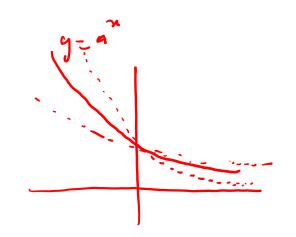
Conclusin! how volutions
$$n = 0$$
, $n = \frac{l_u \lambda}{l_n 3}$



 $a^b > c \Leftrightarrow b > \log_a c$

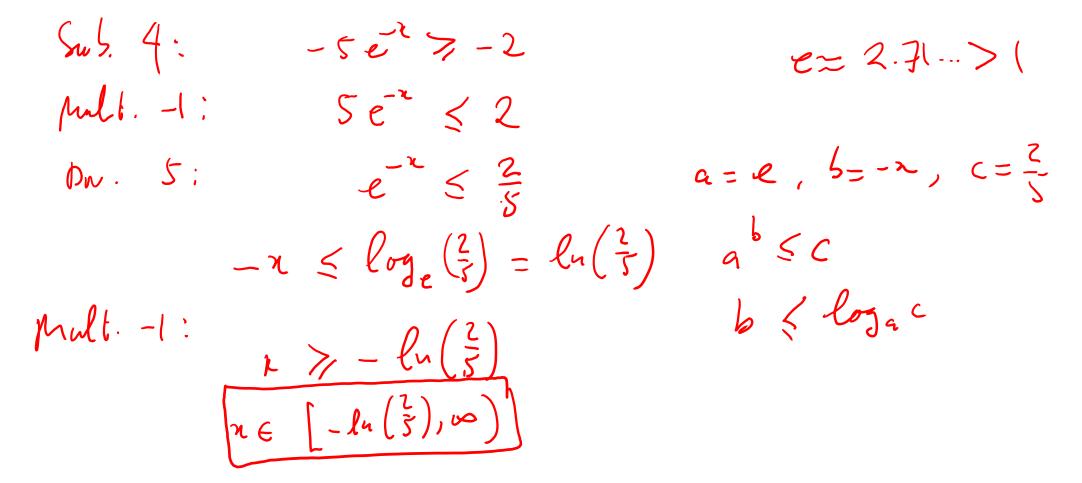
• If a < 1,

 $a^b > c \Leftrightarrow b < \log_a c$



• Example 5: Solve the inequality $4\left(\frac{2}{2}\right)^{x} - 1 < 2$ All 1: $4\left(\frac{2}{7}\right)^2 < 3$ $p_{N, 4}: \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix}^{n} < \frac{3}{4} \qquad a = \frac{2}{5} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ b = n, c = \frac{3}{4}$ n > $\log_2\left(\frac{3}{4}\right) = \frac{\ln\left(\frac{3}{4}\right)}{\ln\left(\frac{3}{5}\right)}$ Conclusion: $\pi \in \left(\frac{\ell_n(34)}{\ell_n(33)}, \omega \right)$

• **Example 6:** Solve the inequality $4 - 5e^{-x} \ge 2$



• **Example 7:** Solve the inequality $3^{x} - 2(3^{-x}) > 1$

1 / 7 = 3* Let t = 3 70 € $\left(t-2\frac{1}{4}>1\right)\times t$ - - - - -2 - - - 2 12-276

• **Example 8:** Solve the inequality $3^x + 2(3^{-x}) > 3$

$$\begin{array}{c} t = 3^{\circ} 70 \\ (t + 2 \quad t = 73) \times t \\ t^{2} + 2 \quad t = 73) \times t \\ t^{2} + 2 \quad 73 \\ t^{2} + 2 - 3t \\ (t - 1)(t - 2) \quad 70 \end{array}$$

t<1 or t>2 3° 51 or 3°72 $\alpha \langle leg | = 0 \text{ or } n \rangle log_2 \lambda = \frac{l_n \lambda}{l_n \lambda}$ Conclusion: n<0 ur a7 lu2 lu3 $x \in (-w, b) \cup (\frac{ln2}{ln3}, b)$