Rational functions

Domain, simplification, vertical and horizontal asymptotes

Rational functions

$$
R(x)=\frac{P(x)}{Q(x)} \quad \text { where } \mathrm{P}(\mathrm{x}) \text { and } \mathrm{Q}(\mathrm{x}) \text { are polynomials. }
$$

Examples:

$$
\left(\frac{2 x+1}{x-1}\right) \underbrace{x+1}_{\mathbb{R}}, \frac{-2}{x^{2}-1}, \frac{x^{2}}{x^{3}-2 x+1}, \ldots .
$$

Domain
(a) $\begin{aligned} \frac{2 x+1}{x-1} \quad \text { domain } & =(-\infty, 1) \cup(1, \infty) \\ & =\mathbb{R} \backslash\{1\}\end{aligned}$
(b) $x+1$ dumain $=\mathbb{R}=(-\infty, \infty)$
(c) $\frac{x^{2}}{x^{3}-2 x+1}$ everything, except the valus of x s.6. $x^{3}-2 x+1=0$

$$
\text { domsin }=\mathbb{R} \backslash\left\{1, \frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right\}
$$

$$
\begin{aligned}
& x^{3}-2 x+1=0 \\
& x=1 \text { is a cot }
\end{aligned}
$$

1	0	-2	1	
	1	1	1	-1
1	1	-1	0	

$x^{3}-2 x+1=\underbrace{(x-1})(\underbrace{x^{2}+x-1}_{2})=0$
either $\underbrace{x=1}$ or $\underbrace{x^{2}+x-1=0}_{a=1, b=1, c}=-1$

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2}=\frac{-1 \pm \sqrt{5}}{2}
$$

Simplification

$$
\frac{6}{8}=\frac{3}{4}
$$

To simplify a rational function is to cancel the common factors, if there are any, of the numerator and the denominator.
(a)

$$
\frac{4 x}{x^{3}-2 x^{2}}=\frac{4 x}{x^{2}(x-2)}=\frac{4 x}{x x(x-2)}=\frac{4}{\underbrace{x(x-2)}_{\text {simplified }}}
$$

form

Simplification
(b) $\frac{x^{2}-x-2}{x^{2}-3 x+2}$

$$
x=1 \text { is a coot }
$$

$$
x^{2}-x-2=(x+1)(x-2)
$$

$x=-1$ is a root

-1	1	-1	-2
	1	-1	2
	1	-2	0

$$
x^{2}-3 x+2=(x-1)(x-2)
$$

1	1	-3	2
	1	1	-2
	1	-2	0

$\frac{x^{2}-x-2}{x^{2}-3 x+2}=\frac{(x+1)(x-2)}{(x-1)(x-2)}=\frac{x+1}{x-1} \quad$ Simplified form

Simplification
(b)

$$
\begin{aligned}
& \frac{x^{2}-x-2}{x^{2}-3 x+2}=\frac{(x+1)(x-2)}{(x-1)(x-2)}=\underbrace{\frac{x+1}{x-1}}_{\mathbb{R} \backslash\{1} \\
& \text { domain }=\mathbb{R} \backslash\{1,2\}
\end{aligned}
$$

Vertical asymptotes

$$
\text { when } x \approx a: P(x) \approx P(a) \neq 0, \quad Q(x) \approx Q(1)=0
$$

The vertical line $x=a$ is a vertical asymptote of $R(x)=P(x) / Q(x)$ if

$$
P(a) \neq 0 \quad \text { and } \quad Q(a)=0
$$

Examples:
(a)

$$
\begin{aligned}
& \frac{2}{x^{2}+x-2} \\
& \underbrace{n^{2}+n-2}_{(a-1)(n+2)}=0
\end{aligned}
$$

$$
x=1 \rightarrow \text { vertical } \text { anger }^{k}
$$

Vertical asymptotes

(b) $\begin{aligned} & \frac{x^{2}+x-2}{x^{2}-3 x+2} \longrightarrow P(k) \neq 0 \\ & Q(n)=0\end{aligned}$

$$
\begin{array}{r}
x^{2}-3 x+2=0 \rightarrow x=1 \rightarrow P(1)=0 \\
x=2 \rightarrow P(2)=4
\end{array}
$$

[Online graphing tool: https://www.geogebra.org/calculator]

Horizontal asymptotes

A rational function $R(x)=\frac{P(x)}{Q(x)}$ has a horizontal asymptote only when the degree of $P(x)$ is less than or equal to the degree of $Q(x)$.

- If degree of $P(x)$ is less than the degree of $Q(x)$, then $y=0$ is the only horizonal asymptote.

Horizontal asymptotes

- If $P(x)$ and $Q(x)$ have the same degree, then the only horizontal asymptote is

$$
y=\frac{a}{b}
$$

where a and b are the leading coefficients of $P(x)$ and $Q(x)$, respectively.
Examples:
(a)

$$
\frac{2 x}{x^{2}-4} \approx 0 \text { when a large }
$$

Horizontal asymptotes
(b) $\frac{2-x}{1+x} \approx \frac{x^{\text {large }}}{\approx} \quad \frac{-x}{x}=-1 \quad \frac{x^{2}+x+1}{-2 x^{2}-3} \approx \frac{x^{2}}{-2 x^{2}}=-\frac{1}{2}$
(c) $\frac{x^{3}-x+1}{x^{2}+4}$ no horizatial asympito

