Functions involving radicals

Radicals - review

- The n 'th root: $\sqrt[n]{x}$ is a number which, when raised to the power n, is equal to x. When there exist two of such numbers, pick the positive one.
- Examples:

$$
(-3)^{2}=(-3)(-3)=5
$$

$$
\begin{aligned}
& \sqrt[2]{9}=\sqrt{9}=3 \\
& \sqrt[3]{8}=2, \quad \sqrt[3]{-8}=-2 \quad(-2)^{3}=-8
\end{aligned}
$$

$\sqrt[4]{-2}$ is undefined

$$
x^{4} \neq-2
$$

$$
\begin{aligned}
& \text { Radical functions - domain } \\
& \text { - The domain of the function } f(x)=\sqrt[n]{x} \text { is } \\
& {[0, \infty) \text { if } n \text { is even }(2,4,6,8, \ldots .)} \\
& \rightarrow(-\infty, \infty) \text { if } n \text { is odd }(3,5,7,9, \ldots) \\
& \text { Ff }=3 \begin{array}{l}
3^{2}=9 \\
(-3)^{2}=9
\end{array} \\
& x \longrightarrow \sqrt{\square} \longrightarrow y \\
& \sqrt[2]{x}=\sqrt{x}, x \geqslant 0 \\
& \sqrt[3]{-1}=-1 \quad \text { because }(-1)^{3}=-1 \\
& \sqrt[3]{1}=1 \quad i^{3}=1
\end{aligned}
$$

- The radical function $\sqrt[0]{x}$ is the inverse of the power function x^{n}

$$
-27 \longrightarrow \sqrt[3]{ } \rightarrow-3
$$

$$
\begin{aligned}
& x \rightarrow \sqrt[W]{\sqrt{ }} \rightarrow y \rightarrow ? \rightarrow x \\
& 9 \rightarrow \sqrt[?]{\square} \rightarrow 3 \rightarrow \square \rightarrow 9
\end{aligned}
$$

Radical functions - graph

$$
f(x)=\sqrt{x}
$$

Radical functions - graph

$$
y=x
$$

Radical functions - graph

Radical functions - power form

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

$$
\sqrt[x]{\sqrt[m]{2}}=\sqrt[3]{x^{m}}
$$

$$
\begin{aligned}
& \left(x^{\left(x^{1 / 2}\right.}\right)^{2}=x^{\frac{1}{2}} x^{\frac{1}{2}} \\
& =x^{\frac{1}{2}+\frac{1}{c}}=x^{1}=x \\
& =x^{-4+n}=x^{0}=1
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& x^{1 / 2}=\sqrt{x} \quad \text { Domain }=[0, \infty) \quad=x^{-n+4}=x^{0}=1 \\
& x^{1 / 3}=\sqrt[3]{x} \quad \text { Domain }=(-\infty, \infty) \\
& x^{-1 / 3}=\frac{1}{x^{1 / 3}}=\frac{1}{\sqrt[3]{x}} \quad \text { Domain }=(-\infty, 0) \cup(0, \infty)=\mathbb{R} \backslash\{0\} . \\
& x^{-2 / 3}=\frac{1}{x^{2 / 3}}=\frac{1}{\sqrt[3]{x^{2}}} \quad \text { Domain }=(-\infty, 0) \cup(0, \infty)=\mathbb{R} \backslash\{0\}
\end{aligned}
$$

Radical functions - power form

$$
x^{m / n}=\sqrt[n]{x^{m}} \quad=\frac{1}{(-8)^{2}}
$$

Examples:

$$
\begin{aligned}
& x^{3 / 4}=\sqrt[4]{x^{3}} \quad \text { Domain: } x \geqslant 0 \quad[0, \infty) \\
& x^{-3 / 4}=\frac{1}{x^{3 / 4}}=\frac{1}{\sqrt[4]{x^{3}}} \quad \text { Domain: } \quad \operatorname{recd}\left\{\begin{array}{l}
\sqrt[4]{x^{3}} \neq 0 \\
x^{3} \geqslant 0 \quad
\end{array} \rightarrow\left\{\begin{array}{l}
x \neq 0 \\
x \geqslant 0
\end{array}\right]\right. \\
& \text { Domain }=(0, \infty) .
\end{aligned}
$$

Radical functions - Review some identities

$$
\left.\begin{array}{lll}
\sqrt{3^{2}}=\sqrt{g}=3 & \sqrt{x^{2}} \text { not alow }=x \\
\sqrt{(-3)^{2}}=\sqrt{9}=3 & |x|=\left\{\begin{array}{cc}
2 & 1 f \\
-x & x
\end{array} \geqslant 0\right.
\end{array}\right\}
$$

Radical functions - composition

- Example 1: find the domain of the function

$$
\begin{aligned}
& f(x)=\sqrt{x-2} \text { For } f \text { to be well-deqnad, we } \\
& x^{2}-3 x+2=(x-1)(x-2) \\
& \left\{\begin{array}{l}
(x-1)(x-2) \neq 0 \longrightarrow \frac{x-1 \neq 0 \text { and } x=2 \neq 0}{x \neq 1,2} \\
\frac{x}{(x-1)(x-2)} \geqslant 0<
\end{array}\right.
\end{aligned}
$$

Radical functions - composition

- Example 1: find the domain of the function

$$
f(x)={\sqrt{\frac{x}{x^{2}-3 x+2}}}^{g(\omega)}
$$

$$
g(x)=\frac{x}{(x-1)(x-2)}
$$

x	-	$0+1$	$+2+$	
$x-1$	-	-	+	+
$x-2$	-	-	-	+
$g(y)$	$-0+1$	-	+	

wot $0 \leqslant x<1$ and $x>2$.
(nclusia: domain $=[0,1) \cup(2, \infty)$.

Radical functions - composition

- Example 2: find the domain of the function

$$
\text { for } f \text { to } k \text { ach-defand }
$$

$$
f(x)=\frac{x^{1 / 4}}{\sqrt[3]{x^{2}-3 x+2}} \quad\left\{\begin{array}{l}
x^{2}-3 x+2 \neq 0 \rightarrow x \neq 1 ; 2 \\
x \geqslant 0 \rightarrow x \geqslant 0
\end{array}\right.
$$

$$
\text { Roman of } f=[0,1) \cup(1,2) \cup(2, \infty) \text {. }
$$

Radical functions - composition

- Example 3: find the inverse of the function

$$
f(x)=\frac{x}{\sqrt{x^{2}+1}}
$$

$$
y=\frac{x}{\sqrt{x^{2}+1}} \rightarrow x=\frac{y}{\sqrt{y^{2}+1}}
$$

Solve for y.)

* \&y have

$$
x^{2}=\frac{y^{2}}{y^{2}+1}
$$

pull. baths sites by $y^{2}+1$.
tho sam sign

$$
x^{2}\left(y^{2}+1\right)=y^{2}
$$

Radical functions - composition

- Example 3: find the inverse of the function

$$
f(x)=\frac{x}{\sqrt{x^{2}+1}}
$$

$$
\begin{aligned}
& x^{2}\left(1+y^{2}\right)=y^{2} \\
& x^{2}+x^{2} y^{2}=y^{2} \\
& x^{2}=y^{2}-x^{2} y^{2}=y^{2}\left(1-x^{2}\right)
\end{aligned}
$$

$$
y^{2}=\frac{x^{2}}{1-x^{2}}
$$

Square ont:

$$
\begin{aligned}
& 1-x^{2} \\
& \pm y=\sqrt{\frac{x^{2}}{1-x^{2}}}=\frac{\sqrt{x^{2}}}{\sqrt{1-x^{2}}}=\frac{|x|}{\sqrt{1-x^{2}}}=\frac{ \pm x}{\sqrt{1-x^{2}}} \\
& y=\frac{ \pm x}{\sqrt{1-x^{2}}} \quad y=\frac{x}{\sqrt{1-x^{2}}} \quad f^{-1}(x)=\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

