Math 252 - Calculus II - Winter 2023

Class Information

Instructor: Tuan Pham
Class meetings: M, T, Th, F, 9:00-9:50 AM at Badgley Hall 146
[Syllabus]   [Canvas]   [Class Schedule]   [Homework Schedule]  

Office Hours

M, T, Th, F 11:45-12:45 PM and 2-3 PM or by appointment at Loso Hall 225

Assignments

  • The list of homework problems is in the homework schedule link above.
  • Mathematica labs are to be turned in on Canvas (see class schedule above):
    [Lab 1]   [Lab 2]   [Lab 3]   [Lab 4]  
  • Lecture notes

  • Final exam review (Mar 17)
  • Lecture 36 (Mar 16): volume of solids of revolution
  • Lecture 35 (Mar 14): area of the region bounded by curves
  • Lecture 34 (Mar 13): improper integrals, Comparison Principle; Quiz 4
  • Lecture 33 (Mar 10): more practice with improper integrals
  • Lecture 32 (Mar 9): improper integrals
  • Lecture 31 (Mar 7): partial fraction decomposition with long division
  • Lecture 30 (Mar 6): partial fraction decomposition (cont.)
  • Lecture 29 (Mar 3): partial fraction decomposition
  • Lecture 28 (Mar 2): trigonometric substitution (cont.); rational functions
  • Lecture 27 (Feb 28): trigonometric substitution; Quiz 3
  • Lecture 26 (Feb 27): integration by parts for definite integrals
  • Lecture 25 (Feb 24): integration by parts for indefinite integrals
  • Lecture 24 (Feb 23): find indeterminate limits using L'Hospital rule
  • Lecture 23 (Feb 21): L'Hospital rule (cont.)
  • Lecture 22 (Feb 20): L'Hospital rule
  • Lecture 21 (Feb 17): derivatives of hyperbolic trigonometric functions and applications
  • Lecture 20 (Feb 16): inverse trigonometric and hyperbolic trigonometric functions
  • Lecture 19 (Feb 14): derivative of the exponential function
  • Midterm review and answer key (Feb 10)
  • Lecture 18 (Feb 9): the exponential function; Quiz 2
  • Lecture 17 (Feb 7): more on logarithmic function; exponential function
  • Lecture 16 (Feb 6): logarithmic function (new definition)
  • Lecture 15 (Feb 3): practice on finding inverse functions; visualization on Mathematica
  • Lecture 14 (Feb 2): inverse functions
  • Lecture 13 (Jan 31): more practice on substitution method; inverse functions
  • Lecture 12 (Jan 30): substitution method for definite integrals; worksheet
  • Lecture 11 (Jan 27): substitution method for indefinite integrals
  • Lecture 10 (Jan 26): Fundamental theorem of Calculus (cont.); Quiz 1
  • Lecture 9 (Jan 24): Fundamental theorem of Calculus
  • Lecture 8 (Jan 23): Simpson's rule; algebraic method for definite integral
  • Lecture 7 (Jan 20): properties of definite integrals
  • Lecture 6 (Jan 19): geometric and analytic methods to find definite integral
  • Lecture 5 (Jan 17): getting started with Mathematica; trapezoid Riemann sum
  • Lecture 4 (Jan 13): sigma notation; left-point, right-point, mid-point Riemann sum
  • Lecture 3 (Jan 12): approximating areas by Riemann sums
  • Lecture 2 (Jan 10): antiderivative (indefinite integral)
  • Lecture 1 (Jan 9): introduction; worksheet
  • Supplement materials

  • Installing Mathematica with Jupyter Notebook as interface
      For technical assistance, please bring your laptop to Alan Humphrey at Math Lab (Loso Hall 232):
       - Monday 10 - 11 AM, 6 - 7 PM,
       - Tuesday 6 - 7 PM,
       - Wednesday 2 - 7 PM,
       - Thursday 10 - 11 AM, 5 - 7 PM.
  • Using Mathematica on Jupyter Notebook, sample lab report: pdf, ipynb
  • Using Mathematica on Wolfram Cloud, sample lab report: pdf, nb
  • Links

    EOU's Portal, Library, Learning Center, Writing Center, Testing Center

    This page was last modified on Friday, Mar 17, 2023.