Lab 2

In this lab, we will practice with Mathematica the following topics:

- Find the limits, derivatives, and antiderivatives of a function.
- Evaluate exactly or numerically a definite integral.
- Visualize and evaluate the area of the region between two curves.
- Compute and visualize inverse functions.

1 Reminder about getting access

There are two ways to get free access to Mathematica:
A) Install three free components: Wolfram Engine, JupyterLab, and WolframLanguageForJupyter. You can use the unlimited computing power of Mathematica on your own computer, with Jupyter Notebook acting as a user interface. The instruction is here:

```
https://web.engr.oregonstate.edu/~phamt3/Resource/Wolfram-Mathematica-with-JupyterLab.pdf
```

B) Use the cloud-based version of Mathematica: https://www.wolframcloud.com

In this option, you are limited to about 8 minutes of computation per month. Files stored on the cloud will be deleted after 60 days.

2 Find limits, derivatives, and antiderivatives

(1) Type Limit $\left[(\operatorname{Cos}[x]-1) / x^{\wedge} 2, x->0\right]$, then Shift+Enter.
(2) Type $\mathrm{a}=\operatorname{Limit}\left[(1+1 / \mathrm{x})^{\wedge} \mathrm{x}, \mathrm{x}->\right.$ Infinity], then Shift+Enter.

Type $N[a, 6]$, then Shift+Enter.
Type N [a, 10], then Shift+Enter.
Type N [a, 15], then Shift+Enter.
(3) Find the limit

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}
$$

Note that in Mathematica, e^{x} is typeset as $\mathrm{E}^{\wedge} \mathrm{x}$ or $\operatorname{Exp}[\mathrm{x}]$.
(4) Type D $[\operatorname{Cos}[x], x]$, then Shift+Enter.

Type $D[\operatorname{Cos}[x],\{x, 2\}]$, then Shift+Enter.
Type D[Cos[x], $\{x, 3\}]$, then Shift+Enter.
(5) Find the third derivative of the function $f(x)=e^{\cos \left(x^{2}\right)}$.
(6) To find an antiderivative of a function, we use the command Integrate. Try

```
Integrate \(\left[x^{\wedge} 2, x\right]\)
f [ \(\left.\mathrm{x}_{-}\right]:=\mathrm{x}-1\)
Integrate[f[x], \(x]\)
```

(7) Try

```
f[x_]:=Integrate[x/Sqrt[1+2x],x]
f[x]
D[f[x],x]
```

(8) Find an antiderivative of the function $x^{2} \sin x$. Double check by differentiating the result.

3 Evaluate definite integrals

To evaluate the exact value of a definite integral, we use the command Integrate. Sometimes, it is impossible to get the exact value (some integrals are really tricky!) In that case, Mathematica may take a long time trying to compute. If you are using the Wolfram Cloud, you should terminate the execution (by pressing the combination Alt + .) if Mathematica takes longer than 10-20 seconds. Otherwise, you might soon run out of the precious 8 minutes quota of the month. If you are using Jupyter Notebook, you don't have to worry about this issue.

If the command Integrate is taking too long to return a value, terminate it and try the command NIntegrate instead. It will instantly give you an approximate numerical value of the definite integral.
(9) Try Integrate[1/x, $\{x, 1,4\}]$
(10) Try

```
NIntegrate[E^(x^2), {x,0,2}]
NIntegrate[E^(x^2), {x, 0,2}, WorkingPrecision->8]
```

(11) Find the exact value of $\int_{0}^{\pi^{2}} \cos \sqrt{x} d x$.
(12) Approximate the integral $\int_{0}^{\pi^{2}} \cos (\sqrt{x}-x) d x$ up to 10 digits after the decimal point.

4 Region between two curves

To highlight the region between two curves, we use the command Plot and the option Filling.
(13) For example, to highlight the region between the line $y=x$ and the parabola $y=x^{2}$ when $0 \leq x \leq 1$, try the following:

$$
\begin{aligned}
& \text { Plot }\left[\left\{x, x^{\wedge} 2\right\},\{x, 0,1\}, \text { Filling->True }\right] \\
& \text { Plot }\left[\left\{x, x^{\wedge} 2\right\},\{x, 0,1\}, \text { Filling->True, PlotLegends->Automatic }\right]
\end{aligned}
$$

(14) Plot the curves $y=\cos x$ and $y=\sin x$, where $0 \leq x \leq 3 \pi$, and highlight the region between them.
(15) The area between the two curves is $\int_{0}^{3 \pi}|\cos x-\sin x| d x$. Notice the absolute value symbol. In Mathematica, the absolute value of a number b is written as $\mathrm{Abs}[\mathrm{b}]$. Evaluate the exact area between the two curves.
(16) To find the points of intersection between the curves $y=\cos x$ and $y=\sin x$, we need to solve the equation $\cos x=\sin x$ where $0 \leq x \leq 3 \pi$. Try the following:

$$
\begin{aligned}
& \text { Solve }[\operatorname{Cos}[x]==\operatorname{Sin}[x] \quad \& \& \quad 0<=x<=3 * \operatorname{Pi}, x] \\
& \text { NSolve }[\operatorname{Cos}[x]==\operatorname{Sin}[x] \quad \& \& \quad 0<=x<=3 * \operatorname{Pi}, x]
\end{aligned}
$$

(17) The values you have just found are the x-coordinates of the intersection points. Can you find the y-coordinates of those points?

5 Compute and visualize inverse functions

(18) Let $f(x)=\frac{2 x+1}{3 x-2}$. To find the inverse of this function, we set $y=\frac{2 x+1}{3 x-2}$ and solve for x. Try

$$
\text { Solve }[y==(2 x+1) /(3 x-1), x]
$$

You can notice that there is only one value of x. Thus, the function has an inverse and the inverse function is $f^{-1}(y)=\frac{1+y}{-2+3 y}$.
(19) Let $f(x)=\frac{x^{2}}{x-2}$. Does the function have an inverse on $\mathbb{R} \backslash\{2\}$?
(20) Usually, it is difficult to find an inverse function. For example, the function $f(x)=2 x+\sin x$ is one-to-one (because $f^{\prime}(x)=2+\cos x>0$), but it is extremely difficult to solve for x from the equation $y=2 x+\sin x$. However, we can still draw the graph of the inverse function by mirroring the the graph of $f(x)$ across the line $y=x$. Try the following:

```
p1 = ParametricPlot[{x, 2x + Sin[x]}, {x, 0, 5}, PlotStyle -> Blue];
p2 = ParametricPlot [{2x + Sin[x], x}, {x, 0, 5}, PlotStyle -> Red];
p3 = ParametricPlot[{x, x}, {x, 0, 7}, PlotStyle -> Dashed];
Show[p1, p2, p3, PlotRange -> Full]
```


6 To turn in

Submit your implementation of Exercises (1) - (20) as a single pdf file.

