Lecture 20

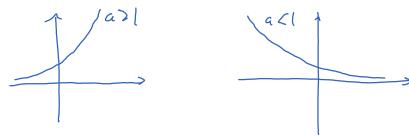
Thursday, February 16, 2023 3:15 AM

& Questions ----

$$x = (e^{\ln x})^{x} = e^{x \ln x}$$

$$(x)' = (e^{n\ln x})' = (n\ln x)' e^{n\ln x} = (\ln x + n + n + n) e^{n\ln x}$$

* a is an increasing function of a > 1, decreasing of O(a < 1.



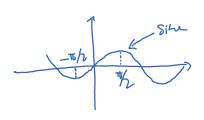
* Inverse togonometric functions;

Sina - arcsina, sina

602 ____ arccor, coix

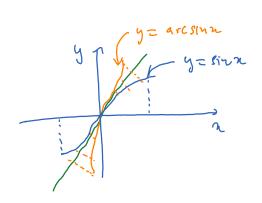
tann - arctann, tan'n

cot x -> arccot x, col n



Note that the sine function doesn't pass
the Horizontal Line Test. We need to restrict the
domain of sine.

Sixe sunction passes the horizontal line test is a $E[-\frac{10}{2}, \frac{70}{2}]$.



The domain of arcsin is [-1,1].

The range of arcsin is [-1,1].

How about its derivative?

Sin (arcsina) = 2

~ (Sin (ar(sina)) = a'

= \(\langle \) \(\arcsin \)

 \sim) $\left(\operatorname{arcsinz}\right) = \frac{1}{\sqrt{1-n^2}}$.

Derivative of f(n) g(n)

(b) (s) is neither an exponential function or a power function.

. Write $g(x)^{g(x)} = \left[e^{\ln g(x)}\right]^{g(x)} = e^{g(x)\ln g(x)}$

 $e^{g(x) \ln f(x)} = \left[g(x) \ln f(x) \right]' = \frac{g(x) \ln f(x)}{f(x)^{g(x)}}$

 $\sum_{n=1}^{\infty} \left(\left(S_{n} n \right)^{con} \right)^{n} = ?$