Midterm: Some problems for review

The exam will be held in class (Badgley 146) during the class time (9-9:50 AM) on Monday February 13. The material covered is Section 3.7-5.2. It is a closed book exam. A 4" x 6 " handwritten single-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.

You should review the homework problems, worksheet problems, examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Estimate an area using Riemann sums.
- Find antiderivatives using the substitution method.
- Find definite integrals using the Fundamental Theorem of Calculus.
- Check if a function is one-to-one. If it is, find the inverse function.
- Simplify or expand functions involving the logarithm.
- Find the limits of functions involving the logarithm.
- Differentiate functions involving the logarithm (using the chain rule).

Additional problems to practice:

1) Use the right-point Riemann sum with $n=5$ to approximate the following integral. Round your result to four decimal places.

$$
\int_{0}^{2} \frac{x}{x+1} d x
$$

2) Evaluate the integral and interpret it in terms of areas.
(a) $\int_{-1}^{2}|x| d x$
(b) $\int_{0}^{10}|x-5| d x$
(c) $\int_{-2}^{0} \sqrt{4-x^{2}} d x$
3) Evaluate the following integrals:
(a) $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$
(b) $\int_{1}^{4} \frac{4+6 t}{\sqrt{t}} d t$
(c) $\int_{-1}^{2}(x-2|x|) d x$
(d) $\int_{1}^{4} \frac{x^{2}+x+1}{x} d x$
(e) $\int \frac{\cos (\pi / x)}{x^{2}} d x$

Hint: use the substitution $u=\pi / x$.
(f) $\int \sqrt{x} \sin \left(1+x^{3 / 2}\right) d x$
4) Show that the function $f(x)=x^{2}-2 x+3$ is one-to-one on the interval (1,5). Find the inverse function of f.
5) Find the limit

$$
\lim _{x \rightarrow \infty}(\ln (2+x)-\ln (1+x))
$$

6) Differentiate the function $f(x)=x^{2} \ln (2 x)$.

Answer keys:

1) 1.0231

2a) $5 / 2$
2b) 25
2c) π
3a) $29 / 6$
3b) 36
3c) $-7 / 2$
3d) $\frac{21}{2}+\ln 4$
3e) $-\frac{1}{\pi} \sin \left(\frac{\pi}{x}\right)+C$
3f) $-\frac{2}{3} \cos \left(1+x^{3 / 2}\right)+C$
4) $f^{-1}(y)=1+\sqrt{y-2}$
5) 0
6) $x+2 x \ln (2 x)$

