Midterm: Some problems for review

The exam will be held in class (Badgley 146) during the class time (9 - 9:50 AM) on Monday February 13. The material covered is Section 3.7 - 5.2. It is a closed book exam. A 4" x 6" handwritten single-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.

You should review the homework problems, worksheet problems, examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Estimate an area using Riemann sums.
- Find antiderivatives using the substitution method.
- Find definite integrals using the Fundamental Theorem of Calculus.
- Check if a function is one-to-one. If it is, find the inverse function.
- Simplify or expand functions involving the logarithm.
- Find the limits of functions involving the logarithm.
- Differentiate functions involving the logarithm (using the chain rule).

Additional problems to practice:

1) Use the right-point Riemann sum with n = 5 to approximate the following integral. Round your result to four decimal places.

$$\int_0^2 \frac{x}{x+1} dx$$

- 2) Evaluate the integral and interpret it in terms of areas.
 - (a) $\int_{-1}^{2} |x| dx$
 - (b) $\int_0^{10} |x 5| dx$

(c)
$$\int_{-2}^{0} \sqrt{4 - x^2} dx$$

- 3) Evaluate the following integrals:
 - (a) $\int_{1}^{2} \left(x + \frac{1}{x}\right)^{2} dx$
 - (b) $\int_1^4 \frac{4+6t}{\sqrt{t}} dt$
 - (c) $\int_{-1}^{2} (x-2|x|) dx$
 - (d) $\int_{1}^{4} \frac{x^2 + x + 1}{x} dx$
 - (e) $\int \frac{\cos(\pi/x)}{x^2} dx$ Hint: use the substitution $u = \pi/x$.

(f) $\int \sqrt{x} \sin(1+x^{3/2}) dx$

- 4) Show that the function $f(x) = x^2 2x + 3$ is one-to-one on the interval (1,5). Find the inverse function of f.
- 5) Find the limit

$$\lim_{x \to \infty} (\ln(2+x) - \ln(1+x))$$

6) Differentiate the function $f(x) = x^2 \ln(2x)$.

Answer keys:

- 1) 1.0231
- 2a) 5/2
- $2b) \ 25$
- 2c) π
- 3a) 29/6
- 3b) 36
- 3c) -7/2
- 3d) $\frac{21}{2} + \ln 4$
- 3e) $-\frac{1}{\pi}\sin\left(\frac{\pi}{x}\right) + C$
- 3f) $-\frac{2}{3}\cos(1+x^{3/2}) + C$
- 4) $f^{-1}(y) = 1 + \sqrt{y-2}$
- 5) 0
- 6) $x + 2x \ln(2x)$