Worksheet 0
 1/9/2023

For Problems 1-8, determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement, and suggest a way to fix the statement.

1. If f and g are differentiable then $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$.
2. If f and g are differentiable then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$.
3. If f and g are differentiable then $\frac{d}{d x} \sqrt{f(x)}=\sqrt{f^{\prime}(x)}$.
4. If f and g are differentiable then $\frac{d}{d x} f(\sqrt{x})=f^{\prime}\left(\frac{1}{2 \sqrt{x}}\right)$.
5. If $f^{\prime}(c)=0$ then f has a local maximum or minimum at c.
6. If f has an absolute minimum value at c, then $f^{\prime}(c)=0$.
7. If f is differentiable and $f(-1)=f(1)$ then there is a number c such that $|c|<1$ and $f^{\prime}(c)=0$.
8. If f is an increasing function on an interval (a, b) then $g(x)=\frac{1}{f(x)}$ is a decreasing function on (a, b).

Do also the following problems:
9. Find the linearization $f(x)=\sqrt[3]{1+3 x}$ of at $a=0$. State the corresponding linear approximation and use it to give an approximate value for $\sqrt[3]{1.03}$.
10. Find $d y$ if $y=x^{3}+x^{2}+x+1, x=2$, and $d x=0.02$.

