Math 254 - Calculus IV - Winter 2023

Class Information

Instructor: Tuan Pham
Class meetings: M, T, Th, F, 1:00-1:50 AM at Badgley Hall 146
[Syllabus]   [Canvas]   [Class Schedule]   [Homework Schedule]  

Office Hours

M, T, Th, F 11:45-12:45 PM and 2-3 PM or by appointment at Loso Hall 225

Assignments

  • The list of homework problems is in the homework schedule link above.
  • Mathematica labs are to be turned in on Canvas (see class schedule above):
    [Lab 1]   [Lab 2]   [Lab 3]   [Lab 4]  
  • Lecture notes

  • Final exam review and answer key (Mar 17)
  • Lecture 37 (Mar 16): evaluate line integral using the Fundamental Theorem of Calculus
  • Lecture 36 (Mar 14): line integral of a vector field
  • Lecture 35 (Mar 13): line integral of a scalar function (the mass problem); Quiz 4
  • Lecture 34 (Mar 10): vector fields and visualization on Mathematica
  • Lecture 33 (Mar 9): spherical coordinates
  • Lecture 32 (Mar 7): change of variables for triple integral; cylindrical coordinates
  • Lecture 31 (Mar 6): practice with change of variables
  • Lecture 30 (Mar 3): change of variables, Jacobian matrix and determinant
  • Lecture 29 (Mar 2): triple integral (cont.); change of variables
  • Lecture 28 (Feb 28): triple integral
  • Lecture 27 (Feb 27): applications of double integral; triple integral; Quiz 3
  • Lecture 26 (Feb 24): double integral using polar coordinates
  • Lecture 25 (Feb 23): double integral over a general domain
  • Lecture 24 (Feb 21): double integral over a rectangle
  • Lecture 23 (Feb 20): double integral
  • Lecture 22 (Feb 17): optimization problem
  • Lecture 21 (Feb 16): classification of critical points
  • Lecture 20 (Feb 14): visualize a gradient vector field; critical points
  • Lecture 19 (Feb 13): gradient vectors and level sets
  • Midterm review and answer key (Feb 10)
  • Lecture 18 (Feb 9): directional derivatives; Quiz 2
  • Lecture 17 (Feb 7): chain rule
  • Lecture 16 (Feb 6): linear approximations; total differential and partial differentials
  • Lecture 15 (Feb 3): tangent planes and visualization on Mathematica
  • Lecture 14 (Feb 2): Clairaut's theorem; geometric interpretation of partial derivatives
  • Lecture 13 (Jan 31): practice on partial derivatives
  • Lecture 12 (Jan 30): Intermediate Value Theorem and partial derivatives
  • Lecture 11 (Jan 27): limits and continuity
  • Lecture 10 (Jan 26): finding limits of a multivariable function; Quiz 1
  • Lecture 9 (Jan 24): multivariable functions-domain, range, graph, level sets
  • Lecture 8 (Jan 23): limits and derivatives of vector functions
  • Lecture 7 (Jan 20): quadratic surfaces and space curves
  • Lecture 6 (Jan 19): practices on line/plane equations; cylinders
  • Lecture 5 (Jan 17): equation of lines and planes
  • Lecture 4 (Jan 13): applications of dot product; cross product
  • Lecture 3 (Jan 12): dot product
  • Lecture 2 (Jan 10): distance in space, vector algebra
  • Lecture 1 (Jan 9): introduction
  • Supplement materials

  • Installing Mathematica with Jupyter Notebook as interface
      For technical assistance, please bring your laptop to Alan Humphrey at Math Lab (Loso Hall 232):
       - Monday 10 - 11 AM, 6 - 7 PM,
       - Tuesday 6 - 7 PM,
       - Wednesday 2 - 7 PM,
       - Thursday 10 - 11 AM, 5 - 7 PM.
  • Using Mathematica on Jupyter Notebook, sample lab report: pdf, ipynb
  • Using Mathematica on Wolfram Cloud, sample lab report: pdf, nb
  • Links

    EOU's Portal, Library, Learning Center, Writing Center, Testing Center

    This page was last modified on Friday, Mar 17, 2023.