Final exam: Some problems for review

The exam will be taken at the regular classroom (Badgley Hall 146) on Thursday, March 23, from 1 PM to 3 PM . The material covered is Section 11.6-13.2, excluding 11.8 and 12.4. A 4" x 6 " handwritten double-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.

You should review the homework problems, quizzes, examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Compute directional derivatives.
- Find critical points of a function and classify them (local max, local min, saddle point, inclusive) using the Second Derivative Test.
- Find min/max of a function in a given region.
- Compute double integrals over a rectangle or a general region.
- Compute triple integrals over a rectangular box or a general solid.
- Find double/triple integral using a change of variables: polar/cylindrical/spherical coordinates.
- Sketch by hand a vector field.
- Find the line integral of a scalar function or a vector field over a curve.

Additional problems to practice:

1) Find $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ where the curve C has a parametrization $x=t, y=\cos (2 t), z=\sin (2 t)$, $0 \leq t \leq 2 \pi$.
2) Find $\int_{C} F \cdot d r$ where $F(x, y)=(y,-x)$ and C is the straight line connecting $(1,1)$ to $(-2,2)$.
3) Find $\iint_{R} \frac{x-2 y}{3 x-y} d A$ where R is the parallelogram enclosed by the lines $x-2 y=0, x-2 y=4$, $3 x-y=1$, and $3 x-y=8$.
4) Find the integral $\iint_{D} y d A$ where D is the region bounded by $y=x-2$ and $x=y^{2}$.
5) Find $\iiint_{E} z d V$ where E is the solid bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$, $y=2 x$, and $z=0$ in the first octant.
6) Find all critical points of the function $f(x, y)=e^{y}\left(y^{2}-x^{2}\right)$ and classify them using the Second Derivative Test.
7) Find the absolute maximum and minimum values of the function $f(x, y)=4 x+6 y-x^{2}-y^{2}$ in the region $D=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq 5\}$.

Solution keys:

1) $\sqrt{5}\left(\frac{8 \pi^{3}}{3}+2 \pi\right)$
2) -4
3) $\frac{8 \ln 8}{5}$
4) $9 / 4$
5) $81 / 16$
6) f has two critical points: $(0,0)$ and $(0,-2)$. $(0,0)$ is a saddle point. $(0,-2)$ is where f attains a local maximum.
7) $\max _{D} f=13$, attained at $(2,3)$
$\min _{D} f=0$, attained at $(0,0)$ and $(4,0)$
