Midterm: Some problems for review

The exam will be taken at the Testing Center (Zabel Hall 112) from Feb 13 to Feb 15. The material covered is Section 10.1 - 11.5. This is a closed book exam, 60 minutes long. A 4" x 6" handwritten double-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.

You should review the homework problems, quizzes, examples given in the textbook and in the lectures. It is always a good idea to study for the exam with someone. The types of problems you may be asked on the exam include:

- Perform basic operations on vectors: addition, scaling, dot product and cross product.
- Find the equations of lines and planes.
- Find the domain of a multivariable function.
- Find limits and determine the continuity of a multivariable function.
- Compute partial derivatives.
- Find tangent planes to surfaces and linear approximation of a function.
- Differentiate a function using the chain rule.

Additional problems to practice:

In Problems 1-7, u, v, w are vectors in 3D. Determine whether the statement is true or false. Give reason for your answers.

- 1) |-2u| = 2|u|
- 2) $|u \times v| \le |u||v|$
- 3) $|u \cdot v| \le |u||v|$
- 4) $u \cdot v = v \cdot u$
- 5) $u \times v = v \times u$
- 6) $(u \times v) \times w = u \times (v \times w)$
- 7) $(u \times v) \cdot u = 0$
- 8) The vector (3, -1, 2) is parallel to the plane 6x 2y + 4z = 1.

In Problems 11-15, r(t) is a vector function of single variable. Determine whether the statement is true or false. Give reason for your answers.

- 9) The curve $r(t) = (0, t^2, 4t)$ is a parabola.
- 10) The curve r(t) = (2t, 3 t, 0) is a curve passing through the origin.
- 11) The projection of the curve $r(t) = (\cos 2t, t, \sin 2t)$ onto the xz-plane is a circle.

In Problems 16-20, classify the given surfaces (cylinder/ ellipsoid/ elliptic paraboloid/ hyperbolic paraboloid/ etc).

12) In \mathbb{R}^3 , the graph of $y = x^2$ is a/an _____.

- 13) The set of points $\{(x, y, z) | x^2 + y^2 = 1\}$ is a/an _____.
- 14) In \mathbb{R}^3 , $x^2 + 4y^2 + z^2 = 1$ is the equation of a/an _____.
- 15) The set of points $\{(x, y, z) | x^2 + 4y^2 z = 0\}$ is a/an _____.
- 16) The set of points $\{(x, y, z)|x^2 4y^2 z = 0\}$ is a/an _____.

Write solutions to the following problems.

- 17) Write the equation of the plane passing through (2, 1, 0) and parallel to x + 4y 3z = 1.
- 18) Write the equation of the plane passing through (3, -1, 1), (4, 0, 2), (6, 3, 1).
- 19) Find the area of the triangle with vertices at (3, -1, 1), (4, 0, 2), (6, 3, 1).
- 20) Write the equation of the plane passing through (1, 2, -2) and containing the line x = 2t, y = 3 t, z = 1 + 3t.
- 21) Find the equation of the plane perpendicular to the curve $r(t) = (t \cos t, t \sin t, t)$ at the point $(0, \pi/2, \pi/2)$.
- 22) Write the equation of the tangent plane to the surface $z = 3x^2 y^2 + 2x$ at point (1, -2, 1).
- 23) A function f(x, y) satisfying $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = f(x_0, y_0)$ is said to be ______ at (x_0, y_0) .
- 24) Find the region where the function $f(x,y) = \frac{e^x + e^y}{e^{xy} 1}$ is continuous.
- 25) By Clairaut's Theorem, a smooth function f(x, y) has at most ______ different partial derivatives of third order.
- 26) Find linear approximation of $f(x, y) = x^3 2xy^2$ around (1, 1).
- 27) If $f(x, y) \to L$ as $(x, y) \to (a, b)$ along every straight line through (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y) = L$. True or false?
- 28) $\lim_{(x,y)\to(1,1)} \frac{2xy^2}{x^2+y^2} =$ _____
- 29) $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2} =$ _____
- 30) $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} =$ _____

Solution keys:

1)	True	17)	x + 4y - 3z = 6
2)	True	18)	-4x + 3y + z + 14 = 0
3)	True	19)	$\frac{\sqrt{26}}{2}$
4)	True	20)	6x + 9y - z = 26
5)	False	21)	$-\frac{\pi}{2}x + \frac{\pi}{2}y + z = \frac{\pi}{2} + \frac{\pi^2}{4}$
6)	False		z = 8x + 4y + 1
7)	True	ĺ.	continuous
8)	False		
9)	True	24)	Everywhere in \mathbb{R}^2 except for the <i>x</i> -axis and the <i>y</i> -axis
10)	False	25)	4
11)	True	26)	$f(x,y) \approx -1 + f_x(1,1)(x-1) + f_y(1,1)(y-1)$
12)	parabolic cylinder		1) = x - 4y + 2
13)	circular cylinder	27)	False. Can you give an example?
14)	ellipsoid	28)	1
15)	elliptic paraboloid	29)	0
16)	hyperbolic paraboloid	30)	DNE