## Quiz 3

2/27/2023

1. Determine all the critical points of the function $f(x, y)=x^{2} y-2 x-y$.
2. Use the Second Derivative Test to classify the critical points found above into local minimum, local maximum, saddle point, or inconclusive.
3. Let $f(x, y)=x^{2}-x y+y^{2}$ and let $D$ be the unit disk centered at the origin. You are given the following information:

The origin is the only critical point of $f$.

$$
\begin{aligned}
& \min _{\text {b.d. } D} f=\frac{1}{2} \text {, attained at }\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) . \\
& \max _{\text {b.d. } D} f=\frac{3}{2} \text {, attained at }\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) .
\end{aligned}
$$

What are $\min _{D} f$ and $\max _{D} f$, and where are they attained?

