Math 213 - Calculus II - Winter 2025

Class Information

Instructor: Tuan Pham
Class meetings: M, T, W, Th, F: 8 - 8:50 AM at SCB 303
[Syllabus]   [Class schedule]   [Canvas]   [WebAssign]  

Office Hours

Monday, Wednesday, Friday: 11:00 AM - 12:30 PM at SCB 316, or by appointment

Assignments

  • Homework problems are to be done in WebAssign.
  • Mathematica labs are to be submitted on Canvas as a pdf file and source file (nb or ipynb).
  • Get access to Mathematica
  • Quizzes are given in class. See the class schedule above.
    Quizzes Labs
    Quiz 1 Lab 1
    Quiz 2 Lab 2
    Quiz 3 Lab 3
    Quiz 4 Lab 4
    Quiz 5 Lab 5
    Quiz 6 Lab 6
    Quiz 7
    Quiz 8
    Quiz 9
    Quiz 10
    Quiz 11
    Quiz 12
  • Lecture notes

  • Review for Final Exam (Apr 11)
  • Lecture 51 (Apr 10): Taylor's series
  • Mathematica Lab day (Apr 9)
  • Lecture 50 (Apr 8): power series representation of rational functions
  • Lecture 49 (Apr 7): power series representation; solve differential equations using power series
  • Lecture 48 (Apr 4): radius of convergence
  • Lecture 47 (Apr 2): power series, interval of convergence
  • Lecture 46 (Apr 1): Ratio Test and Root Test
  • Lecture 45 (Mar 31): error estimation (cont.), absolute and conditional convergence
  • Lecture 44 (Mar 28): Alternating Series Test and error estimation
  • Lecture 43 (Mar 27): alternating series
  • Lecture 42 (Mar 25): Comparison Test (cont.)
  • Lecture 41 (Mar 24): interpretation of Integral Test; Comparison Test
  • Lecture 40 (Mar 21): Integral Test and p-series
  • Lecture 39 (Mar 20): Divergence Test
  • Lecture 38 (Mar 19): compute geometric series and telescoping series
  • Lecture 37 (Mar 18): series; number \(\pi\) and \(e\)
  • Lecture 36 (Mar 17): L'Hospital rule
  • Lecture 35 (Mar 14): limit of a sequence; Worksheet
  • Lecture 34 (Mar 13): monotonicity and boundedness of a sequence
  • Lecture 33 (Mar 12): sequence - general formula and recursive formula; Worksheet
  • Review for Midterm II (Mar 10)
  • Mathematica Lab day (Mar 7)
  • Lecture 32 (Mar 6): area swept by a polar curve, length of a polar curve
  • Lecture 31 (Mar 5): find intersection of polar curves
  • Lecture 30 (Mar 4): graph polar curves
  • Lecture 29 (Mar 3): area enclosed by simple closed curve; polar coordinates
  • Lecture 28 (Feb 28): tangent lines to a parametric curve
  • Lecture 27 (Feb 27): parametric curves, arclength formula
  • Lecture 26 (Feb 26): practice on logistic model
  • Lecture 25 (Feb 25): Verhulst's population model (logistic model); Worksheet
  • Lecture 24 (Feb 24): Malthus' population model
  • Mathematica Lab day (Feb 21)
  • Lecture 23 (Feb 20): Euler's method (cont.) and direction fields; Worksheet
  • Lecture 22 (Feb 19): Euler's method
  • Lecture 21 (Feb 18): practice on integrating factor; Worksheet
  • Lecture 20 (Feb 14): integrating factor
  • Lecture 19 (Feb 13): separation of variables (cont.)
  • Lecture 18 (Feb 12): separation of variables; Worksheet
  • Lecture 17 (Feb 10): introduction to differential equations; Worksheet
  • Review for Midterm I (Feb 7)
  • Lecture 16 (Feb 6): compute length of a curve (continued)
  • Lecture 15 (Feb 5): compute length of a curve
  • Mathematica Lab day (Feb 4)
  • Lecture 14 (Feb 3): Comparison Principle
  • Lecture 13 (Jan 31): improper integrals
  • Lecture 12 (Jan 30): error analysis of Riemann sums
  • Lecture 11 (Jan 29): numerical integration using Riemann sums
  • Lecture 10 (Jan 28): partial fraction decomposition in the case deg\(P\ge\) deg\(Q\)
  • Mathematica Lab day (Jan 27)
  • Lecture 9 (Jan 24): the case \(Q(x)\) cannot be factored
  • Lecture 8 (Jan 23): partial fraction decomposition when \(Q(x)\) only has simple real roots; Worksheet
  • Lecture 7 (Jan 22): integrals of rational function \(\frac{P(x)}{Q(x)}\) where deg\(P<\) deg\(Q\); Worksheet
  • Lecture 6 (Jan 21): trigonometric substitution involving \(\sqrt{x^2+a^2}\), \(\sqrt{x^2-a^2}\), \(\sqrt{a^2-x^2}\); Worksheet
  • Lecture 5 (Jan 17): integrals of the form \(\int\tan^mx\sec^nxdx\)
  • Lecture 4 (Jan 16): practice on integrals of the form \(\int\sin^mx\cos^nxdx\)
  • Lecture 3 (Jan 15): integrals of the form \(\int\sin^mx\cos^nxdx\)
  • Lecture 2 (Jan 14): practice on integration by parts; Worksheet
  • Lecture 1 (Jan 13): integration by parts
  • Mathematica Lab day (Jan 10)
  • Review worksheet (Jan 9)
  • Supplement materials

  • A simple method to find out when an ordinary differential equation is separable
  • Extra credit: find the length of the oscilating curve \(y=x\sin(1/x)\) where \(x\in(0,1]\)
  • Linear algebra method to find integrals of \(e^{ax}\sin(bx),\ e^{ax}\cos(bx),\ xe^{ax}\sin(bx),\ xe^{ax}\cos(bx)\)
  • Trigonometric identities printable table
  • Mathematica instruction from the Wolfram company:
       - 15-minute video: Hands-on start to Mathematica
       - Fast introduction for math students
       - Mathematica as a programming tool: An elementary introduction
  • Use Mathematica on JupyterLab:
       - Installation guide
       - Video instruction, sample lab report: pdf, ipynb
  • Links

    Joseph F. Smith Library, Math Lab

    This page was last modified on Thursday, Apr 10, 2025.