
Lab 3

In this lab, we will practice the following topics on Mathematica:

• Compute sums

• Approximate definite integrals using Riemann sums

• Test and compare convergence rates of different Riemann sums

• Find improper integrals

• Find integrals that have undetermined parameters

The next lab will be built upon this lab, so please make sure that you go through all the instruction
carefully and do all the assignments.

1 To turn in

Do Problems 1-26 in a single Mathematica Notebook file, or ipynb file if you use JupyterLab. Write
your name and lab number at the beginning of your report. Clearly label each problem to separate
them from other problems. Make sure to comment on each problem. If your code doesn’t run
correctly, explain what you are trying to do. Failed code without any comment/explanation
will receive 0 point. Submit on Canvas both the pdf file and the source file (nb or ipynb).

Problems Points

1, 2, 5, 17, 22-24 1

6, 7, 9, 11, 13, 25 2

3, 4, 8, 10, 12, 15, 16, 18-21 3

14 4

Readability of your report 3

Total: 26 Total: 62

2 Compute sums

1. To compute the sum 1 + 1
2 + 1

3 + ... + 1
10 , you write it in sigma notation as

10∑
k=1

1
k . Then you

can evaluate this sum as follows:

Sum[1/k, {k,1,10}]

With the command Sum, Mathematica will try to evaluate the sum exactly. If you want
a result in form of decimal number, enclose the command inside the N[...] command. For
example, to get an approximate value with 8 significant digits, try the following:

N[Sum[1/k, {k,1,10}], 8]

2. To compute 22 − 32 + 42 − 52 + ... − 992 + 1002, we write this sum in sigma notation as
100∑
k=2

(−1)kk2. We can evaluate this formula with the command:

Sum[(-1)^k*k^2, {k,2,100}]

3. Consider the sum 1
3 + 1

5 + 1
7 + ... + 1

201 . First, evaluate it exactly (your result will be a big
fraction). Second, evaluate it in decimal form with 10 digits after the decimal point.

4. Do likewise for the sum 1
3 −

1
5 + 1

7 −
1
9 + ...− 1

201 .
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3 Approximate definite integrals using Riemann sums

To evaluate the definite integral
∫ b
a f(x)dx, it is a common practice to find an antiderivative of f(x)

by using substitution and/or integration by parts. However, not all functions have an antiderivative
of elementary form. In such a case, we can still find approximate values of the definite integral
using Riemann sums.

We do so by dividing the interval [a, b] into n equal subintervals of length ∆x = b−a
n . The

grid-points are x0 = a, x1 = a+ ∆x, x2 = a+ 2∆x,..., xn = a+n∆x = b. In general, xk = a+k∆x
for any k between 0 and n. As there are different ways to determine the height of the rectangular
slats, there are different types of Riemann sums:

• Left endpoint Riemann sum:

Ln =
b− a

n

n∑
k=1

f(xk−1)

• Right endpoint Riemann sum:

Rn =
b− a

n

n∑
k=1

f(xk)

• Midpoint Riemann sum:

Mn =
b− a

n

n∑
k=1

f

(
xk−1 + xk

2

)
• Trapezoid Riemann sum:

Tn =
b− a

n

n∑
k=1

f(xk−1) + f(xk)

2

5. Knowing that the exact value of the integral∫ 2

1
x2dx

is 7
3 = 2.333..., it would be interesting to see how well these sums approximate this integral.

We start by defining the function:

f[x_]:=x^2

a = 1

b = 2

Next, we will create a function called L which receives the values of a, b, n and returns the
value the left endpoint Riemann sum Ln. In the formula of Ln mentioned above, keep in
mind that xk−1 = a + (k − 1)∆x and ∆x = (b− a)/n.

L[n_] := (b - a)/n * N[Sum[f[a + (k - 1)*(b - a)/n], {k, 1, n}], 12]

To find L10, simply enter

L[10]

6. You can expect that as n increases, the Riemann sums Ln, Rn,Mn, Tn will better approximate
the exact value of the integral ∫ 2

1
x2dx
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Let us make a table of 5 columns. The first column is the values of n. The second, third,
fourth, fifth columns are the values of Ln, Rn,Mn, Tn, respectively. Different rows correspond
to different values of n. Let n increase from 100 to 2100 with a jump of 200 from one row to
the next.

Table[{n, L[n], R[n], M[n], T[n]}, {n, 100, 2100, 200}] // TableForm

Which of those four Riemann sums yields the best result? In other words, as n increases,
which column has the fastest convergence to the exact value 7

3 = 2.3333...?

7. Put the heading on each column of the table in the previous exercise. Hint: search Google
for the phrase “put heading for table in mathematica”.

8. The error of approximation for the left endpoint Riemann sum is
∣∣Ln − 7

3

∣∣. In Mathematica,
you can type it as Abs[L[n]-7/3]. Modify the command in Exercise 6 to make a table of
errors. To get an error less than 0.0005, how large must n be for each type of Riemann sums?

9. Do Exercises 6-8 for the integral ∫ π

0
cos(x2)dx.

You may use different starting, ending, spacing values for n. Test if Mathematica can eval-
uate the integral exactly using Integrate. If not, you can use the approximate value from
N[Integrate[...], 12] as the exact value.

The following error estimates are well-known in theory (see, for example, Section 7.7 of the text-
book).

EL =

∣∣∣∣Ln − ∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)2

n
max
[a,b]
|f ′|

ER =

∣∣∣∣Rn −
∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)2

n
max
[a,b]
|f ′|

EM =

∣∣∣∣Mn −
∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)3

24n2
max
[a,b]
|f ′′|

ET =

∣∣∣∣Tn − ∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)3

12n2
max
[a,b]
|f ′′|

An important consequence is that, as n→∞, EL and ER converge to 0 at the rate of 1/n, whereas
EM and EL converge to 0 at the rate of 1/n2, which is faster than 1/n. The proofs of the above
estimates are elementary but does require some clever tricks. You are not asked to prove them
here. However, the exercises below will help you verify experimentally the rate of convergence just
mentioned (1/n and 1/n2). Roughly speaking, you can think of the above estimates as

EL ≈
C1

n
, ER ≈

C2

n
, EM ≈

C3

n2
, ET ≈

C4

n2

where C1, C2, C3, C4 are positive numbers depending on f but not on n. Apply the logarithm:

lnEL ≈ lnC1 − lnn, lnER ≈ lnC2 − lnn, lnEM ≈ lnC3 − 2 lnn, lnET ≈ lnC4 − 2 lnn

Therefore, for large values of n, the points (lnn, lnEL) should approximately fit a straight line of
slope −1. Likewise, the points (lnn, lnEM ) should approximately fit a straight line of slope −2.
This is what you expect to see in the following experiments.
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10. Consider the integral
∫ 2
1 x2dx. Define the function f and the leftpoint Riemann sum L as in

Exercise 5. Then define the error function EL as

ev = Integrate[f[x], {x, a, b}];

EL[n_] := Abs[L[n] - ev];

Go ahead and define the error functions ER, EM , ET in likewise manner.

11. You can plot the list of points (lnn, lnEL), for n from 10 to 20, as follows.

Ldata = Table[{Log[n], Log[EL[n]]}, {n, 10, 20}];

ListPlot[Ldata]

To find the line y = ax + b that best fit this dataset, use the command

Fit[Ldata, {x, 1}, x]

What is the slope of this line? Increase the range of n (for example, n ranging from 100 to
150) and see what happens to the slope. Is what you observe consistent with the theoretical
analysis mentioned earlier?

12. Do Exercise 11 for the right endpoint, midpoint, trapezoid Riemann sums. Name the corre-
sponding datasets Rdata, Mdata, Tdata.

13. Draw all the datasets on the same plot using:

ListPlot[{Ldata, Rdata, Mdata, Tdata}, PlotLegends -> {"L", "R", "M", "T"}]

From the picture, explain why the lowest dataset corresponds to the least error (thus, the
best method). Hint: think of the relationship between EL,R,M,T and lnEL,R,M,T .

14. Use experiment to find out which method, midpoint sum or trapezoid sum, is better for
evaluating the integral

∫ π
0 cos(x2)dx.

Another method to approximate an integral is the Simpson’s rule:∫ b

a
f(x)dx ≈ Sn =

b− a

6n

n∑
k=1

(
f(xk−1) + 4f

(
xk−1 + xk

2

)
+ f(xk)

)
15. Evaluate the integral

∫ π
0 cos(x2)dx using the Simpson’s rule with n = 10.

16. Follow the procedure in Exercise 11 to find out the convergence rate of the error of Simpson’s
rule for the integral

∫ π
0 cos(x2)dx. Is it 1

n , 1
n2 , or a higher power of 1

n?

4 Improper integrals

17. In the command Integrate, you specify the integral bounds
∫ b
a by writing {x,a,b}. One or

both of these bounds might be ±∞. Try the following:

Integrate[1/(x^2+1), {x,0,Infinity}]

N[Integrate[E^(-x^2), {x,-Infinity,0}], 10]

For Problems 18-21, do the following:
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• Plot the integrand and explain why the integral is an improper integral.

• Add the option Filling -> Axis to your plot command to shade the region whose area is
represented by the integral.

• Try to find the exact value of the integral using Integrate. If Mathematica fails to give you
an answer, use N[Integrate[...]] to get an approximate value with 8 digits after the decimal
point.

18.
∫∞
−∞

1
x2+1

dx

19.
∫ 1
−∞ ex sinxdx

20.
∫ 1
0 ln(x)dx

21.
∫ 1
0 sin

(
1
x

)
dx

5 Integrals with unspecified parameters

Sometimes, the integrand may contain a parameter whose value is unspecified. Consider two
following examples, ∫ a/2

0

1

x2 − a2
dx,

∫ ∞
0

1

x2 + a2
dx

22. Find the first integral using Integrate.

23. Find the second integral using Integrate. You will see that, unlike the first integral, the
result depends on whether a > 0, a < 0, or a = 0.

To specify an assumption on the parameter a, we add an option Assumptions inside the Integrate
command. For example, to specify that a > 0, we write

Assumptions->{a>0}

To specify that a is a natural number, i.e. 1,2,3,4,..., we write

Assumptions->{a \[Element] PositiveIntegers}

To specify that a > 0 and n is a natural number, we write

Assumptions->{a>0, n \[Element] PositiveIntegers}

24. Try the command

Integrate[1/(x^2 + a^2), {x, 0, Infinity}, Assumptions -> a > 0]

25. In the above command, change the assumption to a < 0 and then a = 0 (double equal sign).
What do you observe?

26. Find the integral ∫ ∞
0

(a2x2 + b2)n dx

where a < 0, b > 0, and n is a negative integer.
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