
Lab 4

In this lab, we will explore different ways to solve the differential equation

y′ = f(x, y) (1)

using Mathematica. Specifically, we look into the following methods:

• Solve some differential equations using DSolve,

• Plot the direction field and solution curves of (1),

• Use Euler’s method to solve (1) approximately,

• Use contours to visualize solution curves of a separable equation.

The next lab will be built upon this lab, so please make sure that you go through all the instruction
carefully and do all the assignments.

1 To turn in

Do Problems 1-33 in a single Mathematica Notebook file, or ipynb file if you use JupyterLab. Write
your name and lab number at the beginning of your report. Clearly label each problem to separate
them from other problems. Make sure to comment on each problem. If your code doesn’t run
correctly, explain what you are trying to do. Failed code without any comment/explanation
will receive 0 point. Submit on Canvas both the pdf file and the source file (nb or ipynb).

Problems Points

1, 2, 6, 7, 10, 11, 18-20, 22, 29 1

3-5, 8, 9, 12-14, 16, 21, 24, 26-28, 31, 32 2

15, 17, 23, 25, 30, 33 3

Readability of your report 3

Total: 33 Total: 64

2 Solve some differential equations with DSolve

(1) Many differential equations can be solved using the command DSolve. For example, consider
the equation y′ + y = ex. Try the following:

Clear[x, y]

DSolve[y’[x] + y[x] == Exp[x], y[x], x]

The command Clear[y] is to erase from the memory the variables x and y in case they were
previously used. The double equal sign is used to indicate an equation. A single equal sign is
used when you want to assign a value to a variable.

(2) If the initial value is given, say y(0) = 1, then adjust the command as follows.

Clear[x, y]

DSolve[{y’[x] + y[x] == Exp[x], y[0] == 1}, y[x], x]

(3) Graph the solution with y(0) = 1 and the solution with y(0) = −1 on the same plot.

1



(4) Solve the initial value problem y′ = (x2 + 1)(y2 + 1), y(0) = 0. Be careful: in DSolve, make
sure that you write y[x] instead of y. Plot the solution.

(5) There are also many differential equations that DSolve cannot solve. For example, try solving
the equation y′ = x + y3 with DSolve and see what you get. Be careful: in DSolve, you need
to write y[x] instead of y.

3 Direction fields

For each point (a, b) on the plane, the curve y = y(x) that satisfies (1) and passes through (a, b)
will have a slope of y′(a) = f(a, y(a)) = f(a, b) at x = a. If we place at each point (a, b) on the
plane a tiny line segment of slope f(a, b), we will get a direction field. On Mathematica, you can
draw a direction field using the command VectorPlot. The syntax of this command is

VectorPlot[{1,f[x,y]}, {x,xmin,xmax}, {y,ymin,ymax}]

(6) For example, consider the differential equation y′ = x2

y2+1
. Enter the following:

f[x_, y_] := x^2/(y^2 + 1)

VectorPlot[{1, f[x, y]}, {x, -5, 5}, {y, -5, 5}]

You see a map of arrows. The arrows are of the same length but with different colors. The
lighter color, the longer the actual length of the arrow.

(7) The colors are not important for our purposes. You can add VectorColorFunction ->None

to the VectorPlot command to remove the color.

VectorPlot[{1, f[x, y]}, {x, -5, 5}, {y, -5, 5}, VectorColorFunction ->None]

(8) To increase the number of arrows, you can add the option VectorPoints->n to the command
VectorPlot. Here n is a number of your choice, representing the number of arrows a each
vertical line. The default value is 15. Try again the command in the previous exercise with
n = 20, 30, 50, 100.

(9) To “link” these arrows into a curve (called solution curve), we use the command StreamPlot.
Try the following:

StreamPlot[{1, f[x, y]}, {x, -5, 5}, {y, -5, 5}]

You can remove the color by adding the option StreamColorFunction -> None. From the
picture, what is behavior of all the solution curves as x→∞?

(10) To single out the solution curve that passes through a given the point, you add an option
StreamPoints to the above command. For example, to highlight the solution curve that passes
through the point (1,−1), which is the curve satisfying y(1) = −1, try the following:

StreamPlot[{1, f[x, y]}, {x, -5, 5}, {y, -5, 5},

StreamColorFunction -> None,

StreamPoints -> {{{{1, -1}, Red}, Automatic}}]

Sorry, lots of curly brackets! The part {{1, -1}, Red} is to specify that we want the solution
curve passing through (1,−1) to be red. And Automatic is to specify that all other solution
curves have a default color (blue).

2



(11) To highlight one more solution curve, for example the curve that passes through the point
(0, 1), put {{0, 1}, Green} in front of Automatic.

(12) Sketch the direction field of the differential equation y′ = x
y2

. Use both VectorPlot and
StreamPlot.

(13) Highlight the solution curves satisfying the initial conditions y(0) = 4, 3, 2, 1, 0.5.

(14) Mathematica will fail to draw the solution curve satisfying y(0) = 0 because the function x
y2

is
not well-defined when y = 0. However, by looking at the five curves in the previous exercise,
can you guess what the curve satisfying y(0) = 0 will look like?

(15) Pick a differential equation of your choice (but still of the form y′ = f(x, y)). Show the direction
field and show the solution curve satisfying y(1) = 0.

4 Euler’s method

Consider an initial value problem

y′ = f(x, y), y(x0) = y0.

Suppose that we want to solve for y = y(x) on the interval x ∈ [x0, x0 + T ]. With step size h,
Euler’s method allows us to solve approximately the value of y at x1, x2, x3, x4,,... where

x1 = x0 + h

x2 = x1 + h

x3 = x2 + h

...

More specifically, y(xn) is approximated by yn, where yn is found from the recursive formula

yn+1 = yn + hf(xn, yn)

(16) To execute this recursive formula on the computer, we need to write a loop. In Mathematica,
the simplest loops are perhaps the Do loop and the For loop. The syntax of the Do loop is as
follows:

Do[expr, {i,imin,imax}]

Mathematica will execute expr with the variable i successively taking on the values imin
through imax. Notice the comma (not semicolon) between expr and {i,imin,imax}. If expr
should contain multiple commands, separate those commands from each other by semicolons.
For example, to find the sum and product of natural numbers from 1 to 100, we do the following:

sum = 0;

prod = 1;

Do[

sum = sum + i;

prod = prod*i,

{i, 1, 100}

]

sum

prod

3



Note that the expr in this code has two commands: one is sum = sum + i and the other is
prod = prod*i. They are separated from each other by a semicolon.

(17) Use a single Do loop to find two sums:

21

12
+

22

22
+

23

32
+ ... +

2100

1002

1

1
+

1

2
+

1

3
+ ... +

1

100

(18) Let us consider the differential equation y′ = x + y with an initial condition y(0) = 1. We
want to solve for y = y(x), x ∈ [0, 3]. To prepare for the Euler’s method, we enter the known
parameters:

Clear[x, y, f]

f[x_, y_] := x + y;

x0 = 0;

y0 = 1;

T = 3;

(19) Let us take the step size h = 0.1. The number of mesh points x1, x2, x3, ... on the interval
[x0, x0 + T ] is M = T/h. We enter these parameters:

h = 0.1;

M = T/h;

(20) Now we are ready to execute the recursive formula:

x = {x0};

y = {y0};

Do[

AppendTo[x, x[[n]] + h];

AppendTo[y, y[[n]] + h*f[x[[n]], y[[n]]]],

{n, 1, M}

]

For explanation sake, the full code has been split into 3 blocks in the above three exercises. It
is better if you combine them into one single code block so that all of them can be executed at
once.

(21) To put all the points (xn, yn) on the coordinate system, we use the command ListPlot.

A = Table[{x[[n]], y[[n]]}, {n, 1, M+1}];

ListPlot[A, PlotRange -> Full]

To change the color of the points to red, you can add the option PlotStyle -> Red inside the
command ListPlot.

(22) You can also draw the table of values. This table has 3 columns: one for n, one for xn, and
one for yn.

B = Table[{n-1, x[[n]], y[[n]]}, {n, 1, M+1}];

TableForm[B, TableHeadings -> {None, {"n", "xn", "yn"}}]

4



(23) The initial value problem y′ = x+y, y(0) = 1 is simple enough to solve by hand (or by DSolve).
The exact solution is y = −1−x+2ex. You can graph the exact function and the points (xn, yn)
on the same plot to see how well the approximation is.

p1 = Plot[-1 - x + 2*E^x, {x, 0, 3}, PlotStyle -> Red];

p2 = ListPlot[A, PlotRange -> Full];

Show[p1, p2]

What do you observe? What part of the interval [0, 3] is the approximation good, and what
part of it is the approximation not so good? Give an explanation. What is the largest error
between the exact solution (the curve) and approximate solution (the dots)?

(24) Reduce the step size to h = 0.05 and see if the approximation gets better or worse.

(25) Repeat Exercises 18 through 23 for the differential equation y′ = xy2, y(−4) = −0.1, on the
interval x ∈ [−4, 4].

5 Solve separable equations using the contour method

In general, a separable equation only gives solutions in an implicit form.

(26) For example, to solve the equation

y′ =
x3 + 1

y3 + 1

as normally done by hand, we separate y and x as

(y3 + 1)dy = (x3 + 1)dx

and then integrate each side:

Integrate[y^3+1, y]

Integrate[x^3+1, x]

You get an implicit formula y4

4 + y = x4

4 + x + C, or equivalently

y4

4
+ y − x4

4
− x = C.

It is difficult, sometimes impossible, to derive an explicit formula for y from the implicit formula.

(27) Suppose the initial condition is y(0) = 1. Use the command DSolve to see if Mathematica is
able to find an explicit formula for the solution. Keep in mind: in DSolve, make sure that
you write y[x] instead of y alone. If it is taking too long, press the combination Alt + . to
terminate the evaluation.

Whether you get an explicit formula or not, you can always visualize the solution from the implicit
formula. The command ContourPlot plots all the points (x, y) satisfying a given equation.

(28) Suppose the initial condition is y(0) = 1. In this case, the constant C = 5
4 . To draw the

collection of all the points (x, y) satisfying the equation y4

4 + y− x4

4 − x = 5
4 , try the following:

ContourPlot[y^4/4 + y - x^4/4 - x == 5/4, {x, -3, 3}, {y, -3, 3},

ContourStyle -> {Thick, Red}]

5



What you see is the graph of y as a function of x (without knowing an explicit formula of y).

(29) Let us compare the solutions with different initial conditions: y(0) = 1 and y(0) = 2. In the
first case, C = 5

4 . In the second case, C = 6. You will plot each solution using ContourPlot

and then “combine” them into one plot.

p1 = ContourPlot[y^4/4 + y - x^4/4 - x == 5/4, {x, -3, 3}, {y, -3, 3},

ContourStyle -> {Thick, Red}]

p2 = ContourPlot[y^4/4 + y - x^4/4 - x == 6, {x, -3, 3}, {y, -3, 3},

ContourStyle -> {Thick, Blue}]

Show[p1, p2]

(30) Follow Exercise 26 to derive an implicit solution formula for the separable equation

y′ =
y(5x− 2)

x(1− 3y)

given that both x and y are positive. This differential equation comes from the predator-prey
model by Lotka and Volterra.

(31) Suppose the initial condition is y(1) = 1. Use ContourPlot to visualize the solution.

(32) You can see that the picture shown in the previous exercise is not a graph of a function (Vertical
Line Test fails). Can you identify from the picture the largest interval of x on which y is a
function of x ? (This interval is called the maximal interval of existence of the solution.)
Hint: look at the differential equation as well as the graph and see for what value(s) of x is the
slope of the curve equal to infinity.

(33) Show the solution with the initial condition y(1) = 1 and the solution with the initial condition
y(1) = 1/2 on the same plot. How are they compared to each other?

6

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

	To turn in
	Solve some differential equations with DSolve
	Direction fields
	Euler's method
	Solve separable equations using the contour method

