
Last time, we saw 4 numerical methods to evaluate numerically an integral  𝑓ሺ𝑥ሻ𝑑𝑥

 . They are the left-

point, right-point, midpoint, and trapezoid methods. 
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For a given value of 𝑛, it takes about the same effort to compute 𝐿,𝑅,𝑀,𝑇 (about 𝑛 െ 1 additions 
and 1 multiplication). Which method is the best to use? 
The best method is the method that can give us an answer within an allowable error with the smallest 
value of 𝑛. In other words, the best method is the one that requires the least amount of computation 
to achieve the same precision goal.

We will estimate how large the difference is  𝑓ሺ𝑥ሻ𝑑𝑥

 െ 𝐿. You can expect that it gets smaller as 𝑛

increases. It is natural to ask how large  𝑓ሺ𝑥ሻ𝑑𝑥

 െ 𝐿 is compared to 1/𝑛.
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This estimate implies that the difference  𝑓ሺ𝑥ሻ𝑑𝑥

 െ 𝐿 is of the order 1/𝑛 as 𝑛 increases. Skipping 

some computational details, we have
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With the same value of 𝑛 (sufficiently large), the midpoint and trapezoid methods yield smaller errors 
than the left-point and right-point methods.
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